3,097 research outputs found

    A Simple, Quick, and Precise Procedure for the Determination of Water in Organic Solvents

    Get PDF
    A procedure for the UV/VIS-spectroscopic determination of water by the use of a solvatochromic pyridiniumphenolate betaine is given. The water content of organic solvents is calculated by a two parameter equation from λmax of the dye. A typical, detection limit is of the order of 1 mg in 1 ml solvent for routine spectrometers. The parameters for the determination of water are given for a number of commonly used solvents

    Impact of Many-Body Effects on Landau Levels in Graphene

    Get PDF
    We present magneto-Raman spectroscopy measurements on suspended graphene to investigate the charge carrier density-dependent electron-electron interaction in the presence of Landau levels. Utilizing gate-tunable magneto-phonon resonances, we extract the charge carrier density dependence of the Landau level transition energies and the associated effective Fermi velocity vFv_\mathrm{F}. In contrast to the logarithmic divergence of vFv_\mathrm{F} at zero magnetic field, we find a piecewise linear scaling of vFv_\mathrm{F} as a function of charge carrier density, due to a magnetic field-induced suppression of the long-range Coulomb interaction. We quantitatively confirm our experimental findings by performing tight-binding calculations on the level of the Hartree-Fock approximation, which also allow us to estimate an excitonic binding energy of ≈\approx 6 meV contained in the experimentally extracted Landau level transitions energies.Comment: 10 pages, 6 figure

    Proof of the Double Bubble Conjecture in R^n

    Get PDF
    The least-area hypersurface enclosing and separating two given volumes in R^n is the standard double bubble.Comment: 20 pages, 22 figure

    The origin recognition core complex regulates dendrite and spine development in postmitotic neurons

    Get PDF
    The origin recognition complex (ORC) ensures exactly one round of genome replication per cell cycle through acting as a molecular switch that precisely controls the assembly, firing, and inactivation of the replication initiation machinery. Recent data indicate that it may also coordinate the processes of mitosis and cytokinesis and ensure the proper distribution of replicated genome to daughter cells. We have found that the ORC core subunits are highly expressed in the nervous system. They are selectively localized to the neuronal somatodendritic compartment and enriched in the membrane fraction. siRNA knockdown of ORC subunits dramatically reduced dendritic branch formation and severely impeded dendritic spine emergence. Expression of ORC ATPase motif mutants enhanced the branching of dendritic arbors. The ORC core complex thus appears to have a novel role in regulating dendrite and dendritic spine development in postmitotic neurons

    On fault-tolerance with noisy and slow measurements

    Full text link
    It is not so well-known that measurement-free quantum error correction protocols can be designed to achieve fault-tolerant quantum computing. Despite the potential advantages of using such protocols in terms of the relaxation of accuracy, speed and addressing requirements on the measurement process, they have usually been overlooked because they are expected to yield a very bad threshold as compared to error correction protocols which use measurements. Here we show that this is not the case. We design fault-tolerant circuits for the 9 qubit Bacon-Shor code and find a threshold for gates and preparation of p(p,g)thresh=3.76×10−5p_{(p,g) thresh}=3.76 \times 10^{-5} (30% of the best known result for the same code using measurement based error correction) while admitting up to 1/3 error rates for measurements and allocating no constraints on measurement speed. We further show that demanding gate error rates sufficiently below the threshold one can improve the preparation threshold to p(p)thresh=1/3p_{(p)thresh} = 1/3. We also show how these techniques can be adapted to other Calderbank-Shor-Steane codes.Comment: 11 pages, 7 figures. v3 has an extended exposition and several simplifications that provide for an improved threshold value and resource overhea

    Phonon-Metamorphosis in Ferromagnetic Manganite Films: Probing the Evolution of an Inhomogeneous State

    Get PDF
    The analysis of phonon anomalies provides valuable information about the cooperative dynamics of lattice, spin and charge degrees of freedom. Significant is the anomalous temperature dependence of the external modes observed in La2/3_{2/3}Sr1/3_{1/3}MnO3_{3} (LSMO) films. The two external modes merge close to the ferromagnetic to paramagnetic transition at TCT_C and, moreover, two new modes evolve in this temperature range with strong resonances at slightly higher frequencies. We propose that this observed phonon metamorphosis probes the inhomogeneous Jahn-Teller distortion, manifest on the temperature scale TCT_C. The analysis is based on the first observation of all eight phonon modes in the metallic phase of LSMO and on susceptibility measurements which identify a Griffiths-like phase.Comment: 4 pages, 4 figure

    Native myocardial T1 time can predict development of subsequent anthracycline-induced cardiomyopathy

    Get PDF
    Aims: This study aims to assess subclinical changes in functional and morphological myocardial magnetic resonance parameters very early into an anthracycline treatment, which may predict subsequent development of anthracycline-induced cardiomyopathy (aCMP). Methods and results: Thirty sarcoma patients with planned anthracycline-based chemotherapy (360-400 mg/m doxorubicin-equivalent) were recruited. Median treatment time was 19.1 ± 2.1 weeks. Enrolled individuals received three cardiovascular magnetic resonance studies (before treatment, 48 h after first anthracycline treatment, and upon completion of treatment). Native T1 mapping (modified Look-Locker inversion recovery 5s(3s)3s), T2 mapping, and extracellular volume maps were acquired in addition to a conventional cardiovascular magnetic resonance with steady-state free precession cine imaging at 1.5 T. Patients were given 0.2 mmol/kg gadoteridol for extracellular volume quantification and late gadolinium enhancement imaging. Development of relevant aCMP was defined as drop of left ventricular ejection fraction (LVEF) by >10%. For analysis, 23 complete data sets were available. Nine patients developed aCMP with LVEF reduction >10% until end of chemotherapy. Baseline LVEF was not different between patients with and without subsequent aCMP. When assessed 48 h after first dose of antracyclines, patients with subsequent aCMP had significantly lower native myocardial T1 times compared with before therapy (1002.0 ± 37.9 vs. 956.5 ± 29.2 ms, P  0.05). Patients with aCMP had decreased left ventricular mass upon completion of therapy (86.9 ± 24.5 vs. 81.1 ± 22.3 g; P = 0.02), while patients without aCMP did not show a change in left ventricular mass (81.8 ± 21.0 vs. 79.2 ± 18.1 g; P > 0.05). No patient developed new myocardial scars or compact myocardial fibrosis under chemotherapy. Conclusions: Early decrease of T1 times 48 h after first treatment with anthracyclines can predict the development of subsequent aCMP after completion of chemotherapy

    Where is Population II?

    Get PDF
    The use of roman numerals for stellar populations represents a classification approach to galaxy formation which is now well behind us. Nevertheless, the concept of a pristine generation of stars, followed by a protogalactic era, and finally the mainstream stellar population is a plausible starting point for testing our physical understanding of early star formation. This will be observationally driven as never before in the coming decade. In this paper, we search out observational tests of an idealized coeval and homogeneous distribution of population II stars. We examine the spatial distribution of quasars, globular clusters, and the integrated free electron density of the intergalactic medium, in order to test the assumption of homogeneity. Any realreal inhomogeneity implies a population II that is not coeval.Comment: for publication in PAS

    Where is Population II?

    Full text link
    The use of roman numerals for stellar populations represents a classification approach to galaxy formation which is now well behind us. Nevertheless, the concept of a pristine generation of stars, followed by a protogalactic era, and finally the mainstream stellar population is a plausible starting point for testing our physical understanding of early star formation. This will be observationally driven as never before in the coming decade. In this paper, we search out observational tests of an idealized coeval and homogeneous distribution of population II stars. We examine the spatial distribution of quasars, globular clusters, and the integrated free electron density of the intergalactic medium, in order to test the assumption of homogeneity. Any realreal inhomogeneity implies a population II that is not coeval.Comment: for publication in PAS

    BDNF mobilizes synaptic vesicles and enhances synapse formation by disrupting cadherin–ÎČ-catenin interactions

    Get PDF
    Neurons of the vertebrate central nervous system have the capacity to modify synapse number, morphology, and efficacy in response to activity. Some of these functions can be attributed to activity-induced synthesis and secretion of the neurotrophin brain-derived neurotrophic factor (BDNF); however, the molecular mechanisms by which BDNF mediates these events are still not well understood. Using time-lapse confocal analysis, we show that BDNF mobilizes synaptic vesicles at existing synapses, resulting in small clusters of synaptic vesicles “splitting” away from synaptic sites. We demonstrate that BDNF's ability to mobilize synaptic vesicle clusters depends on the dissociation of cadherin–ÎČ-catenin adhesion complexes that occurs after tyrosine phosphorylation of ÎČ-catenin. Artificially maintaining cadherin–ÎČ-catenin complexes in the presence of BDNF abolishes the BDNF-mediated enhancement of synaptic vesicle mobility, as well as the longer-term BDNF-mediated increase in synapse number. Together, this data demonstrates that the disruption of cadherin–ÎČ-catenin complexes is an important molecular event through which BDNF increases synapse density in cultured hippocampal neurons
    • 

    corecore