530 research outputs found

    The prion gene is associated with human long-term memory

    Get PDF
    Human cognitive processes are highly variable across individuals and are influenced by both genetic and environmental factors. Although genetic variations affect short-term memory in humans, it is unknown whether genetic variability has also an impact on long-term memory. Because prion-like conformational changes may be involved in the induction of long-lasting synaptic plasticity, we examined the impact of single-nucleotide polymorphisms (SNPs) of the prion protein gene (PRNP) on long-term memory in healthy young humans. SNPs in the genomic region of PRNP were associated with better long-term memory performance in two independent populations with different educational background. Among the examined PRNP SNPs, the common Met129Val polymorphism yielded the highest effect size. Twenty-four hours after a word list-learning task, carriers of either the 129MM or the 129MV genotype recalled 17% more information than 129VV carriers, but short-term memory was unaffected. These results suggest a role for the prion protein in the formation of long-term memory in human

    CPEB3 is Associated with Human Episodic Memory

    Get PDF
    Cytoplasmic polyadenylation element-binding (CPEB) proteins are crucial for synaptic plasticity and memory in model organisms. A highly conserved, mammalian-specific short intronic sequence within CPEB3 has been identified as a ribozyme with self-cleavage properties. In humans, the ribozyme sequence is polymorphic and harbors a single nucleotide polymorphism that influences cleavage activity of the ribozyme. Here we show that this variation is related to performance in an episodic memory task and that the effect of the variation depends on the emotional valence of the presented material. Our data suggest a role for human CPEB3 in human episodic memory

    Recognition memory performance can be estimated based on brain activation networks

    Get PDF
    Recognition memory is an essential ability for functioning in everyday life. Establishing robust brain networks linked to recognition memory performance can help to understand the neural basis of recognition memory itself and the interindividual differences in recognition memory performance.; We analysed behavioural and whole-brain fMRI data from 1'410 healthy young adults during the testing phase of a picture-recognition task. Using independent component analysis (ICA), we decomposed the fMRI contrast for previously seen vs. new (old-new) pictures into networks of brain activity. This was done in two independent samples (training sample: N = 645, replication sample: N = 665). Next, we investigated the relationship between the identified brain networks and interindividual differences in recognition memory performance by conducting a prediction analysis. We estimated the prediction accuracy in a third independent sample (test sample: N = 100).; We identified 12 robust and replicable brain networks using two independent samples. Based on the activity of those networks we could successfully estimate interindividual differences in recognition memory performance with high accuracy in a third independent sample (r = 0.5, p = 1.29 × 10; -07; ).; Given the robustness of the ICA decomposition as well as the high prediction estimate, the identified brain networks may be considered as potential biomarkers of recognition memory performance in healthy young adults and can be further investigated in the context of health and disease

    Effectiveness of a stand-alone, smartphone-based virtual reality exposure app to reduce fear of heights in real-life: a randomized trial

    Get PDF
    Smartphone-based virtual reality (VR) applications (apps) might help to counter low utilization rates of available treatments for fear of heights. Demonstration of effectiveness in real-life situations of such apps is crucial, but lacking so far. Objective of this study was to develop a stand-alone, smartphone-based VR exposure app-Easy Heights-and to test its effectiveness in a real-life situation. We performed a single-blind, parallel group, randomized controlled trial. We recruited 70 participants with fear of heights, aged 18-60 years. Primary outcome was performance in a real-life Behavioral Avoidance Test (BAT) on a lookout tower after a single 1-h app use (phase 1) and after additional repeated (6 × 30 min) app use at home (phase 2). After phase 2, but not phase 1, participants in the Easy Heights condition showed significantly higher BAT scores compared to participants in the control condition (Cohen's d = 1.3, p = 0.0001). Repeated use of our stand-alone, smartphone-based VR exposure app reduces avoidance behavior and fear, providing a low-threshold treatment for fear of heights

    Encoding difficulty promotes postlearning changes in sleep spindle activity during napping

    Full text link
    Learning-dependent increases in sleep spindle density have been reported during nocturnal sleep immediately after the learning session. Here, we investigated experience-dependent changes in daytime sleep EEG activity after declarative learning of unrelated word pairs. At weekly intervals, 13 young male volunteers spent three 24 h sessions in the laboratory under carefully controlled homeostatic and circadian conditions. At approximately midday, subjects performed either one of two word-pair learning tasks or a matched nonlearning control task, in a counterbalanced order. The two learning lists differed in the level of concreteness of the words used, resulting in an easier and a more difficult associative encoding condition, as confirmed by performance at immediate cued recall. Subjects were then allowed to sleep for 4 h; afterward, delayed cued recall was tested. Compared with the control condition, sleep EEG spectral activity in the low spindle frequency range and the density of low-frequency sleep spindles (11.25-13.75 Hz) were both significantly increased in the left frontal cortex after the difficult but not after the easy encoding condition. Furthermore, we found positive correlations between these EEG changes during sleep and changes in memory performance between pre-nap and post-nap recall sessions. These results indicate that, like during nocturnal sleep, daytime sleep EEG oscillations including spindle activity are modified after declarative learning of word pairs. Furthermore, we demonstrate here that the nature of the learning material is a determinant factor for sleep-related alterations after declarative learning

    Effectiveness of a smartphone-based, augmented reality exposure app to reduce fear of spiders in real-life : A randomized controlled trial

    Get PDF
    Although in vivo exposure therapy is highly effective in the treatment of specific phobias, only a minority of patients seeks therapy. Exposure to virtual objects has been shown to be better tolerated, equally efficacious, but the technology has not been made widely accessible yet. We developed an augmented reality (AR) application (app) to reduce fear of spiders and performed a randomized controlled trial comparing the effects of our app (six 30-min sessions at home over a two-week period) with no intervention. Primary outcome was subjective fear, measured by a Subjective Units of Distress Scale (SUDS) in a Behavioural Approach Test (BAT) in a real-life spider situation at six weeks follow-up. Between Oct 7, 2019, and Dec 6, 2019, 66 individuals were enrolled and randomized. The intervention led to significantly lower subjective fear in the BAT compared to the control group (intervention group, baseline: 7.12 [SD 2.03] follow-up: 5.03 [SD 2.19] vs. control group, baseline: 7.06 [SD 2.34], follow-up 6.24 [SD 2.21]; adjusted group difference -1.24, 95 % CI -2.17 to -0.31; Cohen’s d = 0.57, p = 0.010). The repeated use of the AR app reduces subjective fear in a real-life spider situation, providing a low-threshold and low-cost treatment for fear of spiders

    Evolutionary conserved role of neural cell adhesion molecule-1 in memory.

    Get PDF
    Vukojevic V, Mastrandreas P, Arnold A, et al. Evolutionary conserved role of neural cell adhesion molecule-1 in memory. Translational psychiatry. 2020;10(1): 217.The neural cell adhesion molecule 1 (NCAM-1) has been implicated in several brain-related biological processes, including neuronal migration, axonal branching, fasciculation, and synaptogenesis, with a pivotal role in synaptic plasticity. Here, we investigated the evolutionary conserved role of NCAM-1 in learning and memory. First, we investigated sustained changes in ncam-1 expression following aversive olfactory conditioning in C. elegans using molecular genetic methods. Furthermore, we examined the link between epigenetic signatures of the NCAM1 gene and memory in two human samples of healthy individuals (N=568 and N=319) and in two samples of traumatized individuals (N=350 and N=463). We found that olfactory conditioning in C. elegans induced ncam-1 expression and that loss of ncam-1 function selectively impaired associative long-term memory, without causing acquisition, sensory, or short-term memory deficits. Reintroduction of the C. elegans or human NCAM1 fully rescued memory impairment, suggesting a conserved role of NCAM1 for memory. In parallel, DNA methylation of the NCAM1 promoter in two independent healthy Swiss cohorts was associated with memory performance. In two independent Sub-Saharan populations of conflict zone survivors who had faced severe trauma, DNA methylation at an alternative promoter of the NCAM1 gene was associated with traumatic memories. Our results support a role of NCAM1 in associative memory in nematodes and humans, and might, ultimately, be helpful in elucidating diagnostic markers or suggest novel therapy targets for memory-related disorders, like PTSD

    Better Memory and Neural Efficiency in Young Apolipoprotein E ε4 Carriers

    Get PDF
    The apolipoprotein E (APOE) ε4 allele is the major genetic risk factor for Alzheimer's disease, but an APOE effect on memory performance and memory-related neurophysiology in young, healthy subjects is unknown. We found an association of APOE ε4 with better episodic memory compared with APOE ε2 and ε3 in 340 young, healthy persons. Neuroimaging was performed in a subset of 34 memory-matched individuals to study genetic effects on memory-related brain activity independently of differential performance. E4 carriers decreased brain activity over 3 learning runs, whereas ε2 and ε3 carriers increased activity. This smaller neural investment of ε4 carriers into learning reappeared during retrieval: ε4 carriers exhibited reduced retrieval-related activity with equal retrieval performance. APOE isoforms had no differential effects on cognitive measures other than memory, brain volumes, and brain activity related to working memory. We suggest that APOE ε4 is associated with good episodic memory and an economic use of memory-related neural resources in young, healthy human

    Human cerebellum and corticocerebellar connections involved in emotional memory enhancement

    Get PDF
    Emotional information is better remembered than neutral information. Extensive evidence indicates that the amygdala and its interactions with other cerebral regions play an important role in the memory-enhancing effect of emotional arousal. While the cerebellum has been found to be involved in fear conditioning, its role in emotional enhancement of episodic memory is less clear. To address this issue, we used a whole-brain functional MRI approach in 1,418 healthy participants. First, we identified clusters significantly activated during enhanced memory encoding of negative and positive emotional pictures. In addition to the well-known emotional memory-related cerebral regions, we identified a cluster in the cerebellum. We then used dynamic causal modeling and identified several cerebellar connections with increased connection strength corresponding to enhanced emotional memory, including one to a cluster covering the amygdala and hippocampus, and bidirectional connections with a cluster covering the anterior cingulate cortex. The present findings indicate that the cerebellum is an integral part of a network involved in emotional enhancement of episodic memory

    Glucocorticoid-related genetic susceptibility for Alzheimer's disease

    Get PDF
    Because glucocorticoid excess increases neuronal vulnerability, genetic variations in the glucocorticoid system may be related to the risk for Alzheimer's disease (AD). We analyzed single-nucleotide polymorphisms in 10 glucocorticoid-related genes in a population of 814 AD patients and unrelated control subjects. Set-association analysis revealed that a rare haplotype in the 5′ regulatory region of the gene encoding 11β-hydroxysteroid dehydrogenase type 1 (HSD11B1) was associated with a 6-fold increased risk for sporadic AD. Results of a reporter-gene assay indicated that the rare risk-associated haplotype altered HSD11B1 transcription. HSD11B1 controls tissue levels of biologically active glucocorticoids and thereby influences neuronal vulnerability. Our results indicate that a functional variation in the glucocorticoid system increases the risk for AD, which may have important implications for the diagnosis and treatment of this diseas
    corecore