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A B S T R A C T   

Background: Recognition memory is an essential ability for functioning in everyday life. Establishing robust brain 
networks linked to recognition memory performance can help to understand the neural basis of recognition 
memory itself and the interindividual differences in recognition memory performance. 
Methods: We analysed behavioural and whole-brain fMRI data from 1′410 healthy young adults during the testing 
phase of a picture-recognition task. Using independent component analysis (ICA), we decomposed the fMRI 
contrast for previously seen vs. new (old-new) pictures into networks of brain activity. This was done in two 
independent samples (training sample: N = 645, replication sample: N = 665). Next, we investigated the rela
tionship between the identified brain networks and interindividual differences in recognition memory perfor
mance by conducting a prediction analysis. We estimated the prediction accuracy in a third independent sample 
(test sample: N = 100). 
Results: We identified 12 robust and replicable brain networks using two independent samples. Based on the 
activity of those networks we could successfully estimate interindividual differences in recognition memory 
performance with high accuracy in a third independent sample (r = 0.5, p = 1.29 × 10− 07). 
Conclusion: Given the robustness of the ICA decomposition as well as the high prediction estimate, the identified 
brain networks may be considered as potential biomarkers of recognition memory performance in healthy young 
adults and can be further investigated in the context of health and disease.   

1. Introduction 

Recognition memory describes the ability to judge whether an object 
or event has been previously encountered [1]. This ability is essential for 
functioning in everyday life and has an important role in shaping one’s 
future behaviour and decision making [2,3]. Thus, recognition memory 
paradigms are widely used in empirical research on human cognition in 
both health and disease [4–6]. One of the most commonly applied 
methods for recognition memory investigation is the Remember-Know 
(R-K) paradigm [7,8]. The R-K paradigm estimates recognition mem
ory based on familiarity, typically defined as a general sense of knowing, 
and recollection, defined as remembering specific details associated 
with the recognised object or event [4]. An alternative view is that 

recollection and familiarity are not distinct processes but rather describe 
differences in memory strength (high and low, respectively) [9]. 

Based on fMRI studies using task-based contrasts, recognition 
memory processes have been linked to activation in multiple brain re
gions, such as the (para)hippocampus and perirhinal cortex in the 
medial temporal lobe, parts of the prefrontal cortex (PFC), the thalamus 
and the parietal cortex [10–18]. Importantly, using different recognition 
memory contrasts facilitates the identification of brain regions that are 
specifically involved in the distinct sub-processes of recognition mem
ory. For example, the anterior and posterior midline cortex, the angular 
gyrus, and medial temporal regions of the default mode network (DMN) 
emerge in the recalled > familiar contrast, the dorsal frontal and parietal 
cortices of the dorsal network emerge in the familiar > recalled contrast 
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and the ventral frontal and parietal cortices, the insular cortex, and the 
caudate regions of the ventral network emerge in a contrast based on 
increasing familiarity strength or confidence [18]. Based on such con
trasts, distinct brain activation patterns have been detected for 
familiarity-based vs. recollection-based recognition memory across the 
medial temporal lobe, frontal, parietal and sensory cortices and 
subcortical areas [11,15]. 

These contrast-based analyses allow the identification of regions that 
are in general more (or less) active during a task or in a specific con
dition. However, they rarely make inferences about interindividual 
differences in the behavioural outcome. Of note, a recognition memory 
study has shown that brain activation of specific regions of interest 
(ROIs) within a core recollection network, including the medial PFC and 
the right hippocampus, is additionally associated with interindividual 
differences in task performance [19]. 

Instead of using task-based contrasts and ROI approaches to inves
tigate the link between brain activation and behaviour, more sophisti
cated network-level analyses can be used not only to identify large-scale 
brain networks but also to investigate their impact on individual dif
ferences in task performance [20,21]. These analyses identify brain 
networks as the joint co-dependent activity of different parts of the brain 
[20]. It has been already shown that widespread functional brain net
works are recruited by diverse behavioural tasks, as well as during rest 
[22–24]. 

Functional connectivity approaches have been successfully applied 
in the context of episodic memory performance [25,26]. Schedlbauer 
et al. demonstrated that higher connectivity in key regions like the 
hippocampus, prefrontal cortex, precuneus and visual cortex is related 
to successful memory retrieval [26]. King et al. showed that 
recollection-dependent wide-spread functional connectivity of seed re
gions within a core recollection network comprising the angular gyrus, 
the medial prefrontal cortex, the hippocampus, the middle temporal 
gyrus and the posterior cingulate cortex is associated with recollection 
performance on three behavioural tasks, including the R-K paradigm 
[25]. Furthermore, recent studies have linked network-level brain 
activation to memory-related behavioural outcomes, including working 
memory performance, emotional memory and recollection speed of a 
context memory, using purely data-driven voxel-wise dimensionality 
reduction techniques [27–29]. 

Utilizing such a network-level approach may lead to a more 
comprehensive picture of the neural bases of recognition memory and 
their impact on interindividual differences in memory performance. 
Therefore, we applied a whole-brain, data-driven dimensionality 
reduction approach to identify brain networks related to the testing 
phase of a recognition memory task and investigated their relationship 
with interindividual differences in participants’ overall task perfor
mance, as well as in familiarity and recollection separately. We used 
fMRI data from 1′410 healthy young adults who had performed a 
picture-recognition task in the MRI scanner. The large number of par
ticipants allowed us to identify robust and replicable brain networks. 
Additionally, it enabled us to perform prediction analysis instead of 
simple association analysis, which allows for a higher generalizability of 
our results [30,31]. 

2. Materials and methods 

2.1. Study design 

Healthy young adults took part in a large-scale, single-centre fMRI 
study in Basel, Switzerland, conducted between 2008 and 2015. The 
study has been described elsewhere [27,32,33]. Participants were free of 
any medication other than oral contraceptives and of any neurological 
and psychiatric illness at the time of the study. All participants provided 
written informed consent prior to study participation. The study pro
tocol was approved by the ethics committee of the Cantons of 
Basel-Stadt and Basel-Landschaft. 

2.2. Description of picture encoding and picture recognition task 

1′446 participants performed a picture encoding task for 20 min. 
They were shown 72 meaningful pictures of positive, negative and 
neutral valence (24 per emotional valence category), and 24 scrambled 
pictures. Two additional neutral pictures were presented at the begin
ning and two at the end of the picture-encoding task, in order to account 
for potential primacy and recency effects. Each picture was presented for 
2.5 s in a quasi-randomised order (no more than four consecutive pic
tures per category). A 500 ms fixation-cross appeared before each pic
ture presentation. Each picture was rated on two separate three-point 
Likert scales, measuring subjective arousal and valence of positive, 
negative and neutral pictures and form and size of scrambled pictures. 
Ratings were given via button presses with three fingers of the partici
pant’s preferred hand. Immediately after picture encoding, participants 
performed an N-Back task for 10 min, serving as a distractor task be
tween picture encoding and testing. For a detailed description of the N- 
Back task please see [27]. Subsequently, an unannounced free recall task 
was performed outside the scanner without a time limit. 

The picture recognition task took place approximately 80 min after 
the picture encoding task and lasted for 20 min. Participants were pre
sented with the 72 old pictures shown in the encoding task and a set of 
new pictures comprising again 72 meaningful pictures with positive, 
negative and neutral valence (24 per emotional valence category). Pic
tures were presented in a quasi-randomised order (no more than 4 
consecutive pictures per category). A 500 ms fixation-cross appeared 
before each picture presentation. Participants subjectively rated each 
picture as remembered, familiar or new on a three-point Likert scale 
within 3 s after picture presentation via button presses with three fingers 
of their preferred hand. Participants were instructed to rate a picture as 
remembered if they were certain that they have seen it during the 
encoding phase of the experiment that took place in the scanner. If they 
were not certain that they saw the specific picture in the scanner, or only 
had a feeling of “déjà vu” for the picture, they were instructed to rate it 
as familiar. Participants rated pictures as new if they were certain that 
they have never seen them before. The picture recognition task was 
followed by 20 min of structural MRI (T1) and DTI acquisition. The 
complete experiment lasted 3–4.5 h per participant. Participants were 
compensated with 25 CHF/h. 

For the encoding and the picture recognition task we used pictures 
from the International Affective Picture System (IAPS) [34]. The neutral 
pictures were additionally complemented by 8 in-house standardised 
pictures to equate for visual complexity and content of the stimuli. 

We estimated the recognition memory performance of old and new 
pictures by calculating false-alarm corrected performance scores sepa
rately for familiarity (number of old pictures rated as “familiar” – 
number of new pictures rated as “familiar”) and for recollection (number 
of old pictures rated as “recalled” – number of new pictures rated as 
“recalled”). We then calculated the overall recognition memory per
formance as the sum of false-alarm corrected familiarity scores and 
false-alarm corrected recollection scores. 

2.3. Subsampling 

In order to obtain independent samples needed for the subsequent 
analyses (building of independent brain networks and prediction anal
ysis), we divided our full sample of N = 1′446 participants with com
plete behavioural data in three samples. We created two equally sized 
samples (N = 673 participants) and an additional sample of N = 100 
participants, referred to as training, replication and test sample 
throughout the paper. The samples were created by chronologically 
ordering the participants and then performing the sample split. 

2.4. (f)MRI data acquisition, preprocessing and first-level analysis 

Siemens Magnetom Verio 3 T whole-body MR unit equipped with a 
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twelve-channel head coil was used for scanning. (f)MRI data acquisition, 
preprocessing and the construction of a population-based anatomical 
probabilistic atlas have been described elsewhere [27] and are also re
ported in the Supplementary Information. Preprocessing and first-level 
analysis of the fMRI data was performed using the software SPM8 
(Statistical Parametric Mapping, Wellcome Trust Centre for Neuro
imaging; http://www.fil.ion.ucl.ac.uk/spm/) in MATLAB R2012b 
(MathWorks) using a standard fMRI pipeline. 

Brain activation during presentation of old (previously presented 
during the encoding task) and new (not previously presented) pictures 
during the testing phase of the recognition task was separately estimated 
per participant. 

The difference between the old and the new picture parameter esti
mates was calculated for each participant and voxel (first-level analysis 
for old-new contrast). Performance measurements were not included in 
the analysis. 

2.5. fMRI second-level analysis 

All further analyses were conducted with the statistical software R 
(3.4.2; RRID:SCR_001905). The old-new contrast parameters were 
included in a second-level group analysis. Only participants with com
plete fMRI data (training sample: N = 648; replication sample: N = 665; 
test sample: N = 100) were included. Additionally, we removed par
ticipants with missing values for > 10 % of voxels (N = 3 in the training 
sample) and voxels with any missing values (N = 14′458). The final 
sample included 1′410 participants (training sample: N = 645; replica
tion sample: N = 665; test sample: N = 100) and 56′764 voxels. 

We regressed out the effects of age and sex from the voxel signal 
separately for the training and the replication sample and used the 
scaled residuals in all subsequent analyses. Scanner-related confounding 
variables (gradient coils and software changes) were present in the 
training sample and were also regressed out. To achieve independence 
on participant level in the test sample for the prediction analysis, we 
corrected for sex and age by applying the sex and age beta values derived 
from the training sample to the test sample. Scaling in the test sample 
was also based on the parameter derived from the training sample. 

2.6. Identification of independent brain networks using ICA 
decomposition 

We used ICA in order to decompose the whole-brain fMRI signal into 
a set of voxel-wise independent components. ICA is a dimensionality 
reduction method used for linear representation of non-Gaussian data by 
decomposing them into components that are as statistically independent 
as possible [35]. We applied ICA to a matrix X (old-new contrast pa
rameters), comprising m observations (participants) and n variables 
(voxels). ICA estimates a matrix of k x n latent sources S that underlie the 
variables, while holding the source estimates (voxel loadings) as inde
pendent from each other as possible. Therefore, by applying ICA 
decomposition to old-new contrast parameters (a matrix with partici
pants as rows and voxels as columns) our voxel loadings describe sta
tistically independent latent sources that underlie the contrast estimates. 
Additionally, ICA provides a matrix of m x k mixing coefficients A 
(participants scores) for each independent component. The mixing co
efficients of each component represent the component’s activity 
strength, per participant [36]. Participants with high contrast estimates 
in voxels that load highly onto a particular component in a positive 
direction are assigned elevated scores for that component by this 
method. Therefore, we interpret the participants’ scores as a measure of 
coactivation in the voxels that load onto the component. 

2.7. Determining the optimal number of components 

The number of independent components is a key ICA parameter, and 
there are several methods for its optimisation, such as estimation of 

component stability and reproducibility for ICA solutions with N num
ber of components (ICAN) [37,38], described in the following section. 

2.7.1. ICA decomposition stability assessment 
As a first step for identifying the optimal number of components for 

decomposition of the old-new fMRI contrast, we investigate the stability 
of decomposing the voxel signal into N = 3:24, 26, 28, 30 and 32 ICs (26 
different ICA solutions: ICA3 … ICA32). 

Procedure: 1) We used a resampling method with 100 repetitions and 
90 % of randomly selected participants from the training sample, pro
ducing 100 similar, but non-identical subsamples, in order to prevent 
overfitting. 2) For each of the 26 ICA solutions: a) We performed ICA on 
each of the 100 subsamples, using the fastICA algorithm (R-package 
“fastICA”; [35]); b) We calculated the stability of each IC by applying 
Pearson’s correlation to its voxel loadings across subsamples. Since the 
order of components derived from ICA is arbitrary (e.g. IC1 in one 
sample may be IC2 in another sample), we identified the corresponding 
components between our subsamples as the ones with the highest cor
relation across the subsamples. As the direction of IC estimates is also 
arbitrary, we squared the correlation coefficients to adjust for direc
tionality (r2); c) a given ICA solution stability was calculated as the mean 
stability of its ICs. 

2.7.2. ICA decomposition reproducibility assessment 
As a second step for identifying the optimal number of components, 

we investigated the reproducibility of the five most stable ICA solutions 
between the training and the replication sample. We limited the testing 
to the top five most stable ones in order to keep only ICAs with rather 
high stability and high reproducibility. For each ICA solution, we 1) 
conducted ICA with the complete training and replication sample, 
respectively (no subsampling), 2) created a correlation matrix by 
calculating Pearson’s correlations between the voxel loadings per IC 
across samples. As the direction of IC estimates is arbitrary, we squared 
the correlation coefficients to adjust for directionality (r2). Since the 
order of components derived from ICA is arbitrary, we reordered the 
replication sample ICs, so that each IC matches its corresponding 
training sample IC (r2 ≥ 0.6). Furthermore, as the direction of IC esti
mates is also arbitrary, we recoded IC estimates (voxels loadings and 
participants scores, respectively), so that estimates have the same di
rection in the training and replication sample and voxels with the 
highest absolute loadings have positive loadings. 

From the correlation matrix for each ICA solution we estimated the 
average correlation coefficient on the diagonal, i.e., for matched ICs (X) 
and off the diagonal, i.e., for unmatched ICs (Y), across samples. We 
used mean(r2

X) – mean(r2
Y) as a reproducibility metric (Suppl. Fig. 2). 

The most reproducible ICA solution was used for all subsequent ana
lyses. By doing so, we did not account for model sparsity, but solely 
focused on stability and reproducibility. 

2.8. Recognition memory prediction 

We built our prediction model based on the training sample (N =
645). Specifically, we performed one multiple linear regression model 
using the participants IC scores as predictors and recognition memory 
performance as the outcome variable. 

We first estimated the model fit based on independently estimated 
ICs in the replication sample (N = 665). We applied the regression 
weights of the predictive model to the participants IC scores from the 
replication sample ICs. 

Next, we estimated the model fit in the test sample (N = 100). Since 
ICA was not applied to the test sample, we projected the voxel loadings 
from the ICs in the training sample onto the old-new contrast parameters 
from the test sample, using the ‘ginv’ function from the R package 
“MASS” [39]. Using projected values enabled us to apply our model on 
the fMRI data from a new sample without subjecting it to ICA. Therefore, 
the model can also be applied on a single participant. 
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The model’s accuracy for each sample was assessed by comparing the 
predicted behavioural outcome with the observed behaviour using 
Pearson’s correlation (r). Statistical test for significance was done with a 
t-test (p-value threshold < .05). 

Additionally, the described prediction analyses were conducted two 
more times, for familiarity-based and recollection-based recognition 
memory scores as the outcome variable, separately. The procedure for 
these analyses was identical to the one using the overall recognition 
memory scores. 

2.9. Post hoc analyses 

2.9.1. Reduction of the prediction model 
Next, we investigated if a comparable prediction of the behavioural 

measures can be achieved by using a prediction model based on a 
reduced number of ICs, namely on the ones with the highest contribu
tion to behaviour. In order to identify the most relevant ICs for each 
behavioural measure, we applied both forward and backward stepwise 
model selection using the “stepAIC” function from the “MASS” R pack
age [39]. We used this function to select the best-performing model out 
of 13 possible linear models with 0–12 ICs as predictors and recognition 
memory as the dependent variable in the training sample. We then used 
the best-performing model in order to predict recognition memory 
performance in the replication and the test sample, respectively. The 
same procedure was repeated for familiarity and recollection perfor
mance, separately. 

2.9.2. ICs association with performance on additional behavioural tasks 
We conducted additional exploratory analyses to investigate the link 

between IC scores and the performance in behavioural tasks conducted 
at a different time point. Specifically, we applied a multiple linear 
regression model using the participants’ IC scores as independent vari
ables and different memory-related behaviours as the outcome variable 
in the training, replication and test sample, respectively. This analysis 
was conducted for two different behavioural measures, separately: A) 
Participants’ performance on the unannounced picture free-recall task 
outside of the MRI scanner, calculated as the total number of correctly 
remembered pictures; B) Participants’ performance on a N-Back task 
conducted in the MRI scanner, calculated as a D-prime measure [40] for 
the 2-Back condition. Both the N-Back task and the picture free-recall 
were performed prior to the picture recognition task based on which 
we built the old-new fMRI contrast and decomposed into 12 ICs. As this 
temporal order renders predicting N-Back and picture free-recall per
formance based on the brain activation ICs unsuitable, we instead con
ducted association analyses for these behaviours. 

In order to identify the most relevant ICs for each behavioural 
measure, we applied both forward and backward stepwise model se
lection using the “stepAIC” function from the “MASS” R package [39]. 
We used this function to select the best-performing model out of 13 
possible linear models with 0–12 ICs as independent variables and the 
respective behavioural measure as a dependent variable, separately for 
each sample. 

2.10. Data availability 

The anatomical atlas is provided in Appendix B, DataS1 and the IC 
voxel loadings from the training sample are provided in Appendix B, 
DataS2. The beta coefficients from our prediction model are reported in 
Table 3. Other researchers are welcome and encouraged to use these 
data in order to test our prediction model in additional samples. The 
voxel loadings for the 12 ICs are also stored online in a raw, unthre
sholded manner in the public repository NeuroVault [41] and can be 
retrieved from https://neurovault.org/collections/ITSIOTJG/. 

If needed, further information and scripts for data analysis will also 
be available upon request. 

2.11. Description and analyses of Neurosynth data 

We used Neurosynth data in order to compare our results with pre
vious research. Neurosynth (https://neurosynth.org/) is a freely avail
able database containing large-scale meta-analyses of fMRI studies for 
commonly investigated terms and topics [42]. We downloaded the as
sociation test maps from the term-based automated meta-analyses for 
recognition memory (Nstudies = 148), familiarity (Nstudies = 188) and 
recollection (Nstudies = 157), respectively. The association test maps 
display voxels that are reported more often in articles with abstracts 
containing the term than in articles with abstracts not containing it, i.e., 
voxels which are preferentially related to the term in questions. The 
association maps contain estimates for voxels with FDR-corrected (α =
0.01) significant associations. We registered the association map for 
each term to the image space of our fMRI data using FLIRT [43–45]. 

As a general validation step for our brain activation contrast of in
terest, we calculated the overlap between recognition memory related 
brain activation in Neurosynth and brain activation related to the testing 
phase of our recognition memory task. First, we applied voxel-wise one- 
sample t tests to the parameter estimates of the old-new contrast from 
our own study. Based on these tests, we identified voxels with the 
highest (top 5 %) difference in brain activation between viewing of old 
vs. new pictures in either direction. Next, we calculated the percentage 
of Neurosynth voxels related to recognition memory, familiarity and 
recollection, respectively, that were also within the top 5 % of old vs. 
new pictures brain activation. 

Furthermore, we calculated the overlap between voxels related to 
recognition memory, familiarity and recollection, respectively, in Neu
rosynth and each of our ICs. For each IC, we identified voxels with the 
strongest loadings (overall top 5 %) in the training sample (as depicted 
in Fig. 2). Next, we calculated the number of such top 5 % voxels per IC 
that overlap with significant Neurosynth voxels for each relevant term, 
separately. We also calculated the percentage of Neurosynth voxels for 
each relevant term that belong to the top 5 % voxels per IC. 

3. Results 

During the picture-recognition task, participants were shown 72 
previously seen (old) and 72 new pictures and rated each of them as 
remembered (recollection), familiar (familiarity), or new (novelty). We 
analysed participants’ brain activity when looking at old in comparison 
to new pictures (fMRI contrast old-new). 

To achieve a robust estimation of networks of brain activation and of 
model fit when predicting the behavioural outcome, we divided the full 
sample into three independent samples for the following analyses 
(training sample: N = 645, replication sample: N = 665 and test sample: 
N = 100). Demographic characteristics per sample are presented in 
Table 1. 

The training and replication samples were used to determine the 
optimal number of brain networks that can be robustly identified, 
whereas the test sample was used to achieve unbiased estimates for 
prediction accuracy. 

3.1. Behavioural results 

The mean overall recognition memory performance of our total 
sample was 61.36 (SD = 7.70), 3.53 (SD = 11.29) for familiarity and 

Table 1 
Demographic characteristics (sex and age), shown separately for the training, 
replication and test sample.   

Training sample Replication sample Test sample 

N females (%) 412 (61.22) 406 (60.33) 75 (75) 
Age range 18 - 35 18 - 34 18 - 31 
Mean age 22.4 22.42 22.15  
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57.83 (SD = 10.77) for recollection. Descriptive statistics for recognition 
memory performance scores in the training, replication and test sample 
separately are reported in Table 2. The average number of raw hits, 
misses, correct rejections and false alarms per sample are reported in 
Suppl. Table 1. Signal Detection Theory indices (d’ and c), calculated 
with the ‘dprime’ function of the psycho (v. 0.5.0) R package [46], are 
also reported in Suppl. Table 1. Additional information regarding the 
contribution of old and new picture ratings to the familiarity and 
recollection scores and ceiling effects is provided in the first paragraph 
of the Supplementary Material and Suppl. Fig. 1. 

Recognition memory performance was significantly associated with 
participants’ sex and age in the total sample (sex: Mfemale = 61.76, Mmale 
= 60.72, t(1′056.7) = 2.42, p = 0.016; age: t(1′408) = -2.55, p = 0.011). 
Familiarity-based memory performance was also significantly associ
ated with sex and age (sexfamiliarity: Mfemale = 4.23, Mmale = 2.40, t(1′096.4) 
= 2.94, p = 0.003 ; agefamiliarity: t(1′408) = -2.90, p = 0.004; sexrecollection: 
Mfemale = 57.53, Mmale = 58.32, t(1′095.4) = 1.32, p = 0.186 ; ager

ecollection: t(1′408) = 1.22, p = 0.223). Therefore, all subsequent analyses 
using behavioural data were corrected for sex and age. 

3.2. fMRI old-new contrast result 

We applied voxel-wise (N = 56′764 voxels) one-sample t-tests to the 
parameter estimates of the old-new contrast in our overall sample. Due 
to our large sample size, brain activation within the majority of voxels 
(N = 49′157) significantly differed (p < 0.05, FDR-corrected) between 
viewing of old vs. new pictures. Therefore, in order to depict the most 
relevant brain areas for this contrast, we focused on the voxels with the 
top 5 % of old-new contrast parameter statistics (t-values), including 
both positive and negative values (Fig. 1 A). These voxels were located 
predominantly in occipital regions, left lateralized frontal regions and 
bilateral parietal regions (Suppl. Table 2). 

Next, we compared our old-new contrast parameters with external 
recognition memory-related fMRI data from the Neurosynth database. 
Despite the wide variability of studies included in the Neurosynth meta- 
analysis, 21 % of recognition memory-related voxels in Neurosynth 
(FDR-corrected, α = 0.01) also had the highest difference (top 5 %) in 
brain activation between old and new pictures in our study. These 
overlapping voxels were predominantly localized in the inferior parietal 
lobe, the precuneus and rostral middle and superior frontal regions 
(Fig. 1 A and B; Suppl. Table 3). This was also the case for 13 % of 
familiarity-related voxels, mainly located in the inferior parietal lobe, 
and 14 % of voxels related to recollection, mostly located in the caudal 
middle frontal region, the inferior parietal region and the precuneus 
(Fig. 1 C and D; Suppl. Table 3). 

In the old-new contrast, the parameter estimates of 22′848 voxels 
were significantly associated with sex and of 2′986 voxels with age (p <
0.05, FDR-corrected). The anatomical localization of the significant as
sociations for sex and age is reported in Suppl. Fig. 2. Therefore, all 
subsequent analyses using fMRI data were corrected for sex and age. 

3.3. Identification of stable and reproducible brain networks by using ICA 
decomposition 

In order to reduce the dimensionality of the old-new fMRI contrast 
estimates into a set of brain networks we conducted ICA. ICA is an 

unbiased, data-driven method which reduces the dimensionality of the 
data to a lower number of statistically independent components (ICs, 
also termed brain networks throughout the following text) [35]. We 
determined the optimal number of ICs using a resampling procedure in 
the training sample and using independent validation in the replication 
sample. Specifically, we randomly selected 90 % of the participants from 
the training sample 100 times and repeatedly performed IC decompo
sition with a varying number of ICs (26 different ICA solutions: ICA3 … 
ICA32, see Method section). The stability per number of ICs is depicted in 
Fig. 2A. For each of the 5 most stable solutions (5, 10, 12, 14 and 15 ICs) 
we then performed IC decomposition in the entire training and the entire 
replication sample, respectively. The training and replication sample 
were of similar sample size (training N = 645; replication N = 665), 
which ensured comparable power in both samples for the estimation of 
the ICs. Based on the similarity of the voxel loadings between training 
and replication sample we determined the number of ICs that could be 
successfully replicated in an independent sample. We quantified the 
reproducibility per ICA solution as the average similarity (r2 between 
voxel loadings) of matched vs. unmatched ICs between the training and 
the replication sample (see Method section), resulting in a reproduc
ibility of 0.69, 0.47, 0.70, 0.58 and 0.54, for ICA5, ICA10, ICA12, ICA14 
and ICA15, respectively (Suppl. Fig. 3 and 4). As the solution comprising 
12 ICs was most accurately reproduced in the replication sample 
(Fig. 2B), we used this IC decomposition for the subsequent analyses. For 
the anatomical annotation of the 12 ICs see Fig. 3, Table 3, Suppl. 
Table 4 and Suppl. Fig. 5. How anatomical labelling was conducted is 
described in the Supplementary Material, sections 5 and 6. 

Of note, the solution comprising 5 ICs (ICA5) had comparable 
reproducibility and may also be a suitable candidate for downstream 
analyses. While we opted for the top-performing and more elaborate 12 
ICs solution for our main downstream analyses, we also used ICA5 
(Suppl. Fig. 6) in additional analyses for comparison. The relationship 
between the 12 ICs and 5 ICs solution is presented in Suppl. Fig. 7. 

3.4. Prediction of recognition memory performance based on brain 
activation 

We investigated if we could predict a participant’s recognition 
memory performance based on the brain activation strength in these 12 
ICs. Since the ICs represent co-activation networks resulting from the 
decomposition of the old-new contrast, the participants’ brain activation 
strength per IC shows the contribution of each participant to the group- 
level network. In the training sample, we built a linear model (LM) 
including the recognition memory performance scores as outcome var
iable and the participants’ activation of the 12 ICs as predictors. A sig
nificant regression equation was found (F(12, 632) = 15.65, p < 2.2 ×
10− 16, R2 = 0.229, R2

Adjusted = 0.214). We then applied the beta weights 
from this model (Table 3) to the brain activation of the 12 ICs in the 
replication sample. With this procedure, we could successfully predict 
recognition memory performance with significant accuracy (r = 0.47, p 
< 2.2 × 10− 16; Fig. 4A). Importantly, in this analysis the ICs activation 
was independently estimated in the two samples (Table 4). 

While having an independent estimation of ICs activation in the 
replication sample provides a robust estimate of our prediction model, it 
does not allow for the prediction model to be applied to a single 
participant. In order to assess if our prediction model can also be applied 
at single-participant level, we conducted an additional analysis. Spe
cifically, we projected the voxel loadings from the ICs derived from the 
larger training sample (N = 645) onto the fMRI data of the smaller test 
sample (N = 100). We then applied the beta weights of the training 
sample onto these projected ICs to predict the memory performance in 
the test sample. Again, we were able to predict the memory performance 
with significant accuracy (r = 0.50, p = 1.29 × 10− 07; Fig. 4 B). 

The following four axis showed the strongest single-axis associations 
with recognition memory performance (Fig. 3, Table 3, Suppl. Table 4): 
IC3, which is a predominantly left frontal-parietal network; IC4, which is 

Table 2 
Descriptive statistics (mean and standard deviation) of recognition memory 
performance scores, shown separately for the training, replication and test 
sample.   

Training sample Replication sample Test sample 

Recognition memory 61.59 (7.12) 61.01 (8.35) 62.20 (6.65) 
Familiarity 4.26 (10.84) 2.96 (11.92) 2.57 (9.44) 
Recollection 57.33 (10.89) 58.05 (10.85) 59.63 (9.22)  
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a right-lateralized occipital network; IC8, which is a left-lateralized oc
cipital network; IC2 that comprises the temporal lobe and subcortical 
structures such as the Hippocampus and the Amygdala. 

The prediction results using 5 ICs instead of 12 ICs are reported in 
Suppl. Table 5 and Suppl. Table 6. The 5 IC-solution provides a com
parable prediction accuracy (replication sample: r = 0.41, p < 2.2 ×
10− 16; test sample: r = 0.52, p = 2.69 × 10-08). When comparing the 5 
ICs with the 12 ICs we see a high overlap between IC3 from the 12 ICs 
and IC2 from the 5 ICs (58.9 %, see Suppl. Fig. 7.B). These two axes both 
show the strongest association with recognition memory performance 
(see Table 3 and Supp. Table 6). Therefore, the most relevant component 
for the recognition memory prediction model seems to be, at least in 
part, conserved between these two ICA solutions, and consistently re
sembles a predominantly left frontal-parietal network (Fig. 3, Table 3, 
Suppl. Fig. 5, Suppl. Fig. 6, Suppl. Table 4). 

3.5. Prediction of familiarity and recollection separately based on brain 
activation 

Familiarity-based and recollection-based recognition memory are 
often considered as separate constructs [1,4]. Therefore, we repeated 
the prediction analyses for familiarity-based and recollection-based 
recognition memory, separately, using the identical procedure, i.e., 
building a linear model based on the same 12 brain activation compo
nents from the old-new contrast. A significant regression equation was 
found for familiarity (F(12, 632) = 42.53, p < 2.2 × 10− 16, R2 = 0.447, 
R2

Adjusted = 0.436) and for recollection (F(12, 632) = 21.8, p < 2.2 × 10− 16, 
R2 = 0.293, R2

Adjusted = 0.279). The beta coefficients from the prediction 
models for familiarity and recollection are presented in Table 3. We 
were able to predict both familiarity and recollection with high accuracy 
(replication sample: familiarity: r = 0.69, p < 2.2 × 10− 16, recollection: r 
= 0.50, p < 2.2 × 10− 16; test sample: familiarity: r = 0.68, p = 1.02 ×
10-14, recollection: r = 0.45, p = 2.48 × 10-06, Suppl. Fig. 8). 

Of note, IC2 that comprises the temporal lobe and subcortical 
structures such as the Hippocampus and the Amygdala is significantly 

Fig. 1. A) Voxels with the highest difference in activation between viewing of old in comparison to new pictures in our sample (old-new contrast, one-sample t-tests, 
top 5 % of absolute t-values). Positive and negative values are presented in red and blue, respectively; Meta-analytic results retrieved from Neurosynth (association 
map, α = 0.01, FDR-corrected) for the term B.1) recognition memory, C.1) familiarity and D.1) recollection. Voxels with significant Neurosynth association that also 
have the highest difference (top 5 %) in brain activation between old and new pictures in our own study, i.e., overlapping voxels, are presented for the term B.2) 
recognition memory, C.2) familiarity and D.2) recollection in yellow colour. 
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associated with recognition memory performance and recollection, but 
not familiarity (Table 3). Right frontoparietal (IC9) and bilateral frontal 
(IC7) ICs have high contribution to the prediction of interindividual 
differences in both familiarity and recollection performance, however 
with reversed signs. Therefore, they are not associated with the general 
recognition memory prediction model. IC3, the predominantly left 
frontal-parietal network, appears to contribute more to familiarity and 
IC4, the predominantly right-lateralized occipital IC, more to recollec
tion. IC3 and IC4 also have high contribution to the general recognition 
memory estimation. IC6 (mainly cerebellum) has higher contribution to 
the prediction model for familiarity than for recollection, while the 
opposite is the case for IC8 (left-lateralized occipital regions). 

Familiarity and recollection scores were negatively correlated (r =
-0.76, p < 2.2 × 10− 16) in the overall sample. Since the behavioural 
outcomes show a high negative correlation, it was also possible to derive 
familiarity using the beta coefficients from the recollection-based model 
(replication sample: r = -0.61, p < 2.2 × 10− 16; test sample: r = -0.58, p 
= 1.65 × 10-10) and recollection using the beta coefficients from the 
familiarity-based model (replication sample: r = -0.46, p < 2.2 × 10− 16; 
test sample: r = -0.43, p = 6.19 × 10-06, Suppl. Fig. 9), however with 
reversed signs. 

3.6. Post hoc analyses 

3.6.1. Reduction of the prediction model 
Next, we investigated if an equally high prediction of the behavioural 

measures can be achieved by using only the ICs which have the highest 
contribution to behaviour, rather than all 12 ICs. Using both forward 
and backward model selection in the training sample, we established 
that the best model fit was achieved when using 8 ICs (ICs numbered 1:4, 
6:9) for recognition memory (F(8, 636) = 23.07, p < 2.2 × 10− 16, R2 =

0.225, R2
Adjusted = 0.215), 9 ICs (ICs numbered 3, 5:12) for familiarity 

(F(9, 635) = 56.71, p = 2.2 × 10− 16, R2 = 0.446, R2
Adjusted = 0.438) and all 

12 ICs for recollection (F(12, 632) = 21.8, p < 2.2 × 10− 16, R2 = 0.293, 
R2

Adjusted = 0.279). Next, we used the best-fitting model in order to 
predict recognition memory and familiarity in the replication and the 
test sample, respectively. As the best-fitting model for recollection 
included all 12 ICs, a reduced model prediction was not performed for 
this behavioural measure. We were able to predict both the overall 

recognition memory and familiarity with high accuracy based on their 
respective best-fit models (replication sample: recognition memory: r =
0.48, p < 2.2 × 10− 16, familiarity: r = 0.69, p < 2.2 × 10− 16; test sample: 
recognition memory: r = 0.54, p = 7.92 × 10− 09, familiarity: r = 0.68, p 
= 9.52 × 10-15). Of note, the prediction accuracy estimates of the best-fit 
models are as high as the estimates from the full models including all 12 
ICs. Beta coefficients and p-values from the reduced linear models are 
reported in Table 5. 

3.6.2. Association results for additional behavioural tasks 
Next, we investigated if the old-new fMRI signal decomposed in 12 

ICs is associated with additional memory-related behavioural measures. 
We built two separate linear models including participants’ activation of 
the 12 ICs as independent variables and A) the number of freely recalled 
images outside of the MRI scanner and B) the D-prime 2-Back measure 
from the N-Back task as the outcome variable, respectively, in each 
sample. 

3.6.2.1. Picture free-recall. A significant regression equation was found 
in the training and the replication sample when applying the linear 
model with all 12 ICs as independent variables (training sample: F(12, 

632) = 8.8, p = 1.1 × 10− 15, R2 = 0.143, R2
Adjusted = 0.127; replication 

sample: F(12, 652) = 7.7, p = 1.8 × 10-13, R2 = 0.124, R2
Adjusted = 0.108; 

test sample: F(12, 87) = 1.35, p = 0.207, R2 = 0.157, R2
Adjusted = 0.04). 

Beta coefficients and p-values from the linear model for each sample are 
reported in Supplementary Table 8. Next, we investigated if a reduced 
model would produce comparable results in these samples. The best- 
performing model from the step-wise regression included 5 ICs (ICs 
numbered 1, 4, 5, 7, 8) in the training sample (F(5, 639) = 20, p < 2.2 ×
10-16, R2 = 0.135, R2

Adjusted = 0.129) and 6 ICs (ICs numbered 1, 3, 4, 8, 
9, 10) in the replication sample (F(6, 658) = 14.9, p = 5.2 × 10-16, R2 =

0.120, R2
Adjusted = 0.112). Beta coefficients and p-values from the 

reduced linear models are reported in Supplementary Table 9. In both 
samples the reduced models showed similar performance in comparison 
to the models based on all 12 ICs. 

Of note, IC1 and IC4 highly contributed to the picture free-recall 
association model in both samples. IC4 also had high contribution to 
the prediction model for recognition memory, and higher contribution 
to the recollection-specific, than to the familiarity-specific prediction. 

Fig. 2. ICA stability and reproducibility. A) Stability (y-axis) calculated as the mean correlation (r2) of voxel loadings across 100 runs from the resampling procedure, 
averaged across ICs. This was done separately for different number of ICs (x-axis). The error bars represent 90 % confidence intervals. B) Reproducibility, i.e., 
correlation (r2) between voxel loadings in the training sample and the replication sample, of the IC solution with 12 ICs. Abbreviations: train, training sample; repl, 
replication sample, IC, independent component. 
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The association with free-recall performance further supports the rele
vance of this IC for the recollection memory process. 

3.6.2.2. N-Back. A significant regression equation was found in the 
training and the replication sample when applying the linear model with 
all 12 ICs as independent variables (training sample: F(12, 632) = 2.45, p 
= 0.004, R2 = 0.044, R2

Adjusted = 0.026; replication sample: F(12, 652) =

2.87, p = 0.0007, R2 = 0.05, R2
Adjusted = 0.033; test sample: F(12, 87) =

1.03, p = 0.426, R2 = 0.125, R2
Adjusted = 0.004). Beta coefficients and p- 

values from the linear model for each sample are reported in Supple
mentary Table 10. Next, we investigated if comparable results can be 
obtained by reduced models in these samples. The best-performing 

model from the step-wise regression included 4 ICs (ICs numbered 2, 
3, 6 and 10) in the training sample (F(4, 640) = 6.45, p = 4.33 × 10− 05, R2 

= 0.039, R2
Adjusted = 0.033) and 2 ICs (ICs numbered 1 and 3) in the 

replication sample (F(2, 662) = 16.01, p = 1.62 × 10-07, R2 = 0.046, 
R2

Adjusted = 0.043). Beta coefficients and p-values from the reduced 
linear models are reported in Supplementary Table 11. IC3 was consis
tently associated with the N-Back performance in both samples. 

As expected, the 2-Back performance scores on the N-back task had 
lower association with the brain activation ICs based on the decomposed 
old-new fMRI contrast, compared to the picture free-recall performance 
scores. Nevertheless, the significant 2-Back performance association 
with the brain activation ICs indicates that some of these ICs may also be 

Fig. 3. Anatomical localization of the voxel loadings for each of the 12 ICs in the training sample. Only voxels with the strongest loadings (overall top 5 %) in the 
training sample are depicted. Positive and negative voxels loadings are presented in red and blue, respectively. 
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relevant in the context of a working memory task. 

3.7. Neurosynth meta-analyses results overlap with voxel loadings per IC 
from our study 

Next, we looked into the overlap between brain activation predictive 
of recognition memory in our study and Neurosynth recognition mem
ory meta-analysis results, in order to estimate the comparability of our 
data to previous studies. Specifically, we investigated whether the ICs 
with highest contribution to the predictive models in our sample have 
substantial overlap with recognition memory, familiarity and recollec
tion related brain activation in Neurosynth. 24 % of all voxels signifi
cantly associated with the term recognition memory in Neurosynth had 
very high loadings (overall top 5 %) for IC3 from our study (Fig. 5). IC3 

was the component with the highest contribution to the prediction 
model for recognition memory performance (Table 3). No other IC 
contained > 20 % of voxels associated with recognition memory, fa
miliarity or recollection in Neurosynth. A few other ICs contained > 10 
% of voxels related to one of the relevant Neurosynth terms. The overlap 
between Neurosynth voxels related to recognition memory, familiarity 
and recollection, respectively, and each of our 12 ICs is presented in 
Suppl. Table 7 and Suppl. Fig. 10. 

4. Discussion 

The aim of the current study was to estimate the recognition memory 
performance of healthy young individuals based on a restricted set of 
robust brain networks summarizing their fMRI activation. Therefore, we 
analysed the fMRI signal of a picture-recognition memory task and 
deconstructed the task-based contrast “old – new pictures” into 12 brain 
networks using ICA. Importantly, we confirmed the robustness of this IC 

Table 3 
Descriptive names of the 12 ICs, assigned considering the majority of brain re
gions with sizable coverage (> 10 %) per IC (see also Supplementary Table 4).  

IC IC description IC regions 

1 Bilateral fronto- 
parietal 

Rostral anterior cingulate, Pars opercularis, Inferior 
and superior parietal, Caudal middle frontal, Inferior 
temporal, Pars triangularis 

2 Temporal and 
subcortical 

Amygdala, Hippocampus, Parahippocampal, Fusiform, 
Entorhinal, Ventral Diencephalon, Rostral middle 
frontal, Supramarginal, Temporal pole 

3 Left frontal-parietal Caudal and rostral middle frontal, Pars opercularis, 
Pars orbitalis, Pars triangularis, Superior frontal, 
Lateral orbitofrontal, Supramarginal, Inferior parietal 

4 Right occipital Pericalcarine, Cuneus, Lateral occipital, Lingual, 
Fusiform, Superior parietal 

5 Sensorimotor 1 Precentral, Postcentral, Superior frontal, Superior 
parietal, Supramarginal 

6 Cerebellum Cerebellum cortex, Corpus Callosum, Lingual, 
Fusiform 

7 Bilateral frontal Caudal anterior cingulate, Pars opercularis, Pars 
triangularis 

8 Left occipital Cuneus, Lateral occipital, Lingual, Pericalcarine, 
Fusiform, Superior parietal 

9 Right frontoparietal Caudal middle frontal, Pars orbitalis, Rostral middle 
frontal, Superior frontal, Inferior parietal, Middle 
temporal, Pars opercularis 

10 Cuneus und 
Precuneus 

Isthmus and posterior cingulate, Corpus Callosum, 
Cuneus, Precuneus, Lingual 

11 Corpus callosum Caudate and Corpus Callosum 
12 Sensorimotor 2 Precentral, Paracentral, Insula, Postcentral, Transverse 

temporal, Putamen, Superior temporal, Supramarginal  

Fig. 4. Scatter plot depicting the observed and predicted recognition memory performance scores in A) the replication and B) the test sample. The figure contains 
scaled behavioural data. 

Table 4 
Beta coefficients and p-values from the linear model with memory performance 
scores as the outcome and the 12 brain activation ICs as predictors in the training 
sample.   

Recognition memory Familiarity Recollection  

β p-val β p-val β p-val 

Intercept 0 1 0 1 0 1 
IC1 − 0.127 0.0009 − 0.016 0.628 − 0.068 0.064 
IC2 − 0.145 0.0001 0.035 0.276 − 0.129 0.0003 
IC3 − 0.294 3.74 ×

10− 11 
− 0.309 4.80 ×

10− 16 
0.112 0.007 

IC4 − 0.234 4.53 ×
10− 10 

− 0.007 0.820 − 0.146 4.12 ×
10− 05 

IC5 0.060 0.143 − 0.158 7.25 ×
10− 06 

0.196 9.19 ×
10− 7 

IC6 0.100 0.006 0.145 3.20 ×
10− 06 

− 0.078 0.026 

IC7 − 0.065 0.073 − 0.318 < 2 ×
10− 16 

0.272 1.93 ×
10− 14 

IC8 0.156 2.82 ×
10− 5 

− 0.108 0.0006 0.209 5.7 ×
10− 09 

IC9 0.063 0.123 0.220 4.04 ×
10− 10 

− 0.176 8.18 ×
10− 06 

IC10 − 0.025 0.482 − 0.107 0.0005 0.089 0.010 
IC11 − 0.032 0.380 0.094 0.002 − 0.114 0.001 
IC12 0.041 0.393 − 0.055 0.171 0.081 0.075  
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estimation by using an independent replication sample. Based on the 
activation in these 12 brain networks we could predict recognition 
memory performance in a third independent sample. These results 
reveal the close relationship between the fMRI activation pattern when 
processing old compared to new pictures and the corresponding 
memory-related behavioural outcome. 

Focusing on few robust networks and their relation to the behav
ioural outcome improves data reproducibility and interpretability, 
which is important especially in the context of basic clinical-related 
research [47,48]. Given the stability of the IC estimation confirmed in 
two independent samples and the prediction accuracy estimated in a 
third independent sample, the identified network-level brain activation 
may be considered as potential imaging biomarker of recognition 
memory performance in healthy young adults. 

Of note, our training, replication and test samples were derived from 
the same single-centre study population, avoiding potential noise due to 
differences in sample and study characteristics. However, the results 
remain to be externally validated, in order to further assess the gener
alizability of our findings. For example, one can investigate if the esti
mation of our model can be generalized to brain activation data 
obtained by a different scanner, while performing a comparable, but not 
identical task, in samples with different demographic characteristics or 
in clinical samples. Importantly, the brain-level data per network and 
the predictive model are freely available for further investigation. 

Brain imaging-derived predictive models typically focus on identi
fying biomarkers of diagnostic categories. However, it has been sug
gested that investigating mental processes which are variously altered in 

Table 5 
Beta coefficients and p-values from the reduced linear model with memory 
performance scores as the outcome and the 8 brain activation ICs as predictors 
for recognition memory, 9 ICs for familiarity and 12 ICs for recollection, in the 
training sample.   

Recognition memory Familiarity Recollection  

β p-val β p-val β p-val 

Intercept 0 1 0 1 0 1 
IC1 − 0.124 0.0008   − 0.068 0.064 
IC2 − 0.142 0.0001   − 0.129 0.0003 
IC3 − 0.291 6.43 ×

10− 13 
− 0.315 < 2 ×

10− 16 
0.112 0.007 

IC4 − 0.232 5.40 ×
10− 10   

− 0.146 4.12 ×
10− 05 

IC5   − 0.154 1.00 ×
10− 05 

0.196 9.19 ×
10− 7 

IC6 0.097 0.007 0.147 1.83 ×
10− 06 

− 0.078 0.026 

IC7 − 0.06 0.092 − 0.317 < 2 ×
10− 16 

0.272 1.93 ×
10− 14 

IC8 0.163 1.05 ×
10− 5 

− 0.104 0.0007 0.209 5.7 ×
10− 09 

IC9 0.062 0.103 0.215 2.69 ×
10− 10 

− 0.176 8.18 ×
10− 06 

IC10   − 0.108 0.0003 0.089 0.010 
IC11   0.096 0.002 − 0.114 0.001 
IC12   − 0.063 0.109 0.081 0.075  

Fig. 5. A) Anatomical localization of the voxel 
loadings for IC3 in the training sample. Only 
voxels with the strongest loadings (overall top 5 
%) in the training sample are depicted. Positive 
and negative voxels loadings are presented in 
red and blue, respectively. B) Meta-analytic re
sults for the term recognition memory retrieved 
from Neurosynth (NSRM), association map, FDR 
corrected, α = 0.01. C) NSRM voxels that also 
have high loadings (overall top 5 %) in IC3 from 
our training sample, i.e., overlapping voxels.   

J. Petrovska et al.                                                                                                                                                                                                                               



Behavioural Brain Research 408 (2021) 113285

11

different states and disorders may produce more accurate biomarkers, as 
they are less restricted by theoretical constructs and assumptions [49, 
50]. Recognition memory is a mental process which has an important 
role in our everyday life and aids efficient decision making [3]. Deficits 
in recognition memory performance have been associated with healthy 
aging, mild cognitive impairment and Alzheimer’s disease, as well as 
schizophrenia [5,6,51]. While we conducted basic research on interin
dividual differences in healthy young individuals in this study, the 
identified networks have potential relevance in the context of both 
neuronal processes in healthy individuals and neuropathology. For 
example, it would be interesting to see if the performance of our model 
significantly decreases in certain clinical populations due to distinct 
variability in their brain activation patterns. 

However, it is important to keep in mind that in this study brain 
activation was recorded during the testing phase of the memory task and 
then used to estimate the performance on the same task. Therefore, our 
model may not have predictive utility per se. Nevertheless, as the 12 
network-based brain activation was so closely linked to the interindi
vidual differences in task performance, these networks can be used to 
gain further insight into the neurobiological underpinnings of recogni
tion memory performance. While the nature and the neural features of 
recognition memory have been the object of extensive scientific research 
and debate [4,9], studies on the neural underpinnings of this ability 
typically investigate the general neural mechanisms associated with 
recognition memory processes [10–18] (but also see [19]). Our study 
focused on brain activation underlying interindividual differences in 
recognition memory performance. 

We also investigated the compatibility of the brain activation pat
terns used in our study with previous fMRI contrast-based research on 
recognition memory processes. We used the database Neurosynth for a 
systematic overview of the results of such studies. 21 % of significant 
voxels identified in a large Neurosynth meta-analysis of diverse fMRI 
studies using the term “recognition memory” were located within the 
brain areas with the largest (top 5 %) difference in activation when 
looking at old vs. new pictures in our study, including the inferior pa
rietal lobe, the precuneus and rostral middle and superior frontal re
gions. Importantly, this overlap with previous studies was noted even 
though no information regarding participants’ task performance was 
included when building the old-new contrast. Furthermore, even a 
higher percentage (24 %) of all significant Neurosynth “recognition 
memory” voxels were located within brain areas highly loading onto a 
single network identified in our study (IC3). As IC3 had the highest 
contribution to the prediction model of recognition memory perfor
mance, this Neurosynth finding is in line with our prediction results and 
further emphasizes the relevance of this network in the context of 
recognition memory task performance. IC3 is a predominantly left 
frontal-parietal network. By applying an alternative analysis estimating 
only 5 components, we could show the stability of this specific network. 
Of note, other networks with high contribution to our recognition 
memory prediction model (IC4, IC8) did not contain many previously 
found recognition memory related brain areas, and therefore may be 
considered as a rather novel contribution to the literature. IC4 and IC8 
are predominantly occipital networks. 

Furthermore, based on our 12 brain networks we could also estimate 
with substantial accuracy recollection-based recognition memory per
formance and familiarity-based recognition memory performance, when 
taken as separate constructs. Our models point to bilateral frontal and 
right frontoparietal networks (IC7, IC9) having high contribution to the 
prediction of interindividual differences in both familiarity and recol
lection performance with reversed signs. These networks had a rather 
low contribution to the prediction of recognition memory when no 
distinction between familiarity and recollection was made. Further
more, while our prediction model points to IC3 and IC4 having the 
highest contribution to the recognition memory estimation, IC3 appears 
to contribute more to familiarity and IC4 more to recollection. IC3 is a 
predominantly left frontal-parietal network, whereas IC4 comprises 

mainly right-lateralized occipital regions. Thus, these networks may be 
particularly relevant for each of the specific recognition memory pro
cesses, respectively. Higher contribution to the estimation model for one 
recognition memory process, rather than another is also seen for other 
networks, such as IC6 (mainly cerebellum; familiarity) and IC8 (a left- 
lateralized occipital network; familiarity). IC2, that comprises the tem
poral lobe and subcortical structures such as the Hippocampus and the 
Amygdala, was associated with the overall recognition memory per
formance and recollection but not familiarity. Of note, we did not find a 
striking overlap between networks with high contribution to the pre
dictive model and the corresponding Neurosynth meta-analysis term 
associations for familiarity and recollection, respectively. This may be 
due to high variability of studies associated with these Neurosynth 
terms. In summary, while our prediction results are consistent between 
familiarity, recollection and overall recognition memory performance, 
the extent to which some of the networks contribute to the predictive 
model seems to vary between the different recognition memory 
measurements. 

In order to further investigate the functional specificity of our brain 
networks, we also tested if they are related to interindividual differences 
in the performance of other behavioural tasks. The overall activation in 
these networks was associated with the performance of picture free- 
recall (about 12 % variance explained) and, to a lesser extent, a N- 
Back task (about 3 % variance explained), both conducted prior to the 
recognition memory task. Therefore, at least some of the here identified 
networks may also be relevant for other memory and cognitive 
processes. 

Of note, one of the networks with the highest contribution to 
recognition memory prediction, namely IC4, also highly contributed to 
the picture free-recall association. This mainly right occipital network 
also had a high contribution to the prediction of recollection, but not 
familiarity, further supporting its predominant involvement in 
recollection-based memory. Compared to the medial temporal lobe [9], 
frontal [10,12] and parietal regions [12,13,17], occipital regions are less 
commonly mentioned in contrast-based fMRI studies of recognition 
memory processes using the R-K paradigm. However, previous R-K 
studies have shown that recollection, presumably due to its 
context-depended nature, can be associated with activation of 
content-specific sensory brain areas, including fusiform regions [15, 
52–54]. Furthermore, higher connectivity in the visual cortex has been 
related to successful memory retrieval [26]. The predominantly 
recollection-related IC4 in our study may be in line with these findings, 
as it includes brain activation within regions known to be involved in 
visual processing, such as the lateral occipital cortex and the fusiform 
area [55,56]. Of note, the one network with higher contribution to the 
recognition memory model than IC4 in our study, namely IC3, consisted 
of frontal and parietal regions. While most of these regions have been 
previously listed in studies including the R-K paradigm, some of them, 
such as superior frontal and inferior parietal regions, have been previ
ously mentioned as more relevant for recollection, rather than famil
iarity [15,17]. This is not in line with our IC3 finding, as this network 
had higher familiarity, rather than recollection contribution and did not 
have a striking contribution to the picture-free recall association. 
However, IC3 shows a significant association with working memory 
performance in our sample. Therefore, further investigation of this 
network in the context of the R-K paradigm and similar tasks is needed, 
in order to determine the extent to which its contribution to recognition 
memory performance relies on familiarity and recollection processes or 
even on broader cognitive ability. 

5. Conclusion 

We identified 12 robust functional brain networks, based on which 
we successfully predicted recognition memory performance in general, 
as well as familiarity and recollection, separately. Given the substantial 
accuracy estimates, the network-level brain activation may be 
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considered as potential biomarker of recognition memory performances 
in healthy young adults and can be further investigated in health and 
disease. 
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