218 research outputs found

    The year in cardiovascular medicine 2020: arrhythmias

    Get PDF
    Summary of the progress in arrhythmias in 2020. RACE4 and ALL-IN indicated that integrated nurse-led care improves outcomes in AF patients. The same was reported for early rhythm control therapy and cryoablation as initial AF treatment. Subcutaneous ICD was non-inferior to classical transvenous ICD therapy in PRAETORIAN. One mechanistic study showed that autoantibodies against misexpressed actin, keratin, and connexin-43 proteins create a blood-borne biomarker profile enhancing diagnosis of Brugada syndrome. Another mechanistic study indicated that transseptal LV pacing yields similar improvement in contractility as His bundle pacing whilst being more easy to execute. In PRE-DETERMINE a simple-to-use ECG risk score improved risk prediction in patients with ischemic heart disease possibly enhancing appropriate ICD therapy in high risk patients

    Effect of statins on venous thromboembolic events: a meta-analysis of published and unpublished evidence from randomised controlled trials

    Get PDF
    Background - It has been suggested that statins substantially reduce the risk of venous thromboembolic events. We sought to test this hypothesis by performing a meta-analysis of both published and unpublished results from randomised trials of statins. Methods and Findings - We searched MEDLINE, EMBASE, and Cochrane CENTRAL up to March 2012 for randomised controlled trials comparing statin with no statin, or comparing high dose versus standard dose statin, with 100 or more randomised participants and at least 6 months' follow-up. Investigators were contacted for unpublished information about venous thromboembolic events during follow-up. Twenty-two trials of statin versus control (105,759 participants) and seven trials of an intensive versus a standard dose statin regimen (40,594 participants) were included. In trials of statin versus control, allocation to statin therapy did not significantly reduce the risk of venous thromboembolic events (465 [0.9%] statin versus 521 [1.0%] control, odds ratio [OR] = 0.89, 95% CI 0.78–1.01, p = 0.08) with no evidence of heterogeneity between effects on deep vein thrombosis (266 versus 311, OR 0.85, 95% CI 0.72–1.01) and effects on pulmonary embolism (205 versus 222, OR 0.92, 95% CI 0.76–1.12). Exclusion of the trial result that provided the motivation for our meta-analysis (JUPITER) had little impact on the findings for venous thromboembolic events (431 [0.9%] versus 461 [1.0%], OR = 0.93 [95% CI 0.82–1.07], p = 0.32 among the other 21 trials). There was no evidence that higher dose statin therapy reduced the risk of venous thromboembolic events compared with standard dose statin therapy (198 [1.0%] versus 202 [1.0%], OR = 0.98, 95% CI 0.80–1.20, p = 0.87). Risk of bias overall was small but a certain degree of effect underestimation due to random error cannot be ruled out. Please see later in the article for the Editors' Summary. Conclusions - The findings from this meta-analysis do not support the previous suggestion of a large protective effect of statins (or higher dose statins) on venous thromboembolic events. However, a more moderate reduction in risk up to about one-fifth cannot be ruled out

    Animal Models of Dyssynchrony

    Get PDF
    Cardiac resynchronization therapy (CRT) is an important therapy for patients with heart failure and conduction pathology, but the benefits are heterogeneous between patients and approximately a third of patients do not show signs of clinical or echocardiographic response. This calls for a better understanding of the underlying conduction disease and resynchronization. In this review, we discuss to what extent established and novel animal models can help to better understand the pathophysiology of dyssynchrony and the benefits of CRT

    Long-term protection and mechanism of pacing-induced postconditioning in the heart

    Get PDF
    Brief periods of ventricular pacing during the early reperfusion phase (pacing-induced postconditioning, PPC) have been shown to reduce infarct size as measured after 2 h of reperfusion. In this study, we investigated (1) whether PPC leads to maintained reduction in infarct size, (2) whether abnormal mechanical load due to asynchronous activation is the trigger for PPC and (3) the signaling pathways that are involved in PPC. Rabbit hearts were subjected to 30 min of coronary occlusion in vivo, followed by 6 weeks of reperfusion. PPC consisted of ten 30-s intervals of left ventricular (LV) pacing, starting at reperfusion. PPC reduced infarct size (TTC staining) normalized to area at risk, from 49.0 ± 3.3% in control to 22.9 ± 5.7% in PPC rabbits. In isolated ejecting rabbit hearts, replacing LV pacing by biventricular pacing abolished the protective effect of PPC, whereas ten 30-s periods of high preload provided a protective effect similar to PPC. The protective effect of PPC was neither affected by the adenosine receptor blocker 8-SPT nor by the angiotensin II receptor blocker candesartan, but was abrogated by the cytoskeletal microtubule-disrupting agent colchicine. Blockers of the mitochondrial KATP channel (5HD), PKC (chelerythrine) and PI3-kinase (wortmannin) all abrogated the protection provided by PPC. In the in situ pig heart, PPC reduced infarct size from 35 ± 4 to 16 ± 12%, a protection which was abolished by the stretch-activated channel blocker gadolinium. No infarct size reduction was achieved if PPC application was delayed by 5 min or if only five pacing cycles were used. The present study indicates that (1) PPC permanently reduces myocardial injury, (2) abnormal mechanical loading is a more likely trigger for PPC than electrical stimulation or G-coupled receptor stimulation and (3) PPC may share downstream pathways with other modes of cardioprotection

    Chronic ventricular pacing in children: toward prevention of pacing-induced heart disease

    Get PDF
    In children with congenital or acquired complete atrioventricular (AV) block, ventricular pacing is indicated to increase heart rate. Ventricular pacing is highly beneficial in these patients, but an important side effect is that it induces abnormal electrical activation patterns. Traditionally, ventricular pacemaker leads are positioned at the right ventricle (RV). The dyssynchronous pattern of ventricular activation due to RV pacing is associated with an acute and chronic impairment of left ventricular (LV) function, structural remodeling of the LV, and increased risk of heart failure. Since the degree of pacing-induced dyssynchrony varies between the different pacing sites, ‘optimal-site pacing’ should aim at the prevention of mechanical dyssynchrony. Especially in children, generally paced from a very early age and having a perspective of life-long pacing, the preservation of cardiac function during chronic ventricular pacing should take high priority. In the perspective of the (patho)physiology of ventricular pacing and the importance of the sequence of activation, this paper provides an overview of the current knowledge regarding possible alternative sites for chronic ventricular pacing. Furthermore, clinical implications and practical concerns of the various pacing sites are discussed. The review concludes with recommendations for optimal-site pacing in children

    Electrical modalities beyond pacing for the treatment of heart failure

    Get PDF
    In this review, we report on electrical modalities, which do not fit the definition of pacemaker, but increase cardiac performance either by direct application to the heart (e.g., post-extrasystolic potentiation or non-excitatory stimulation) or indirectly through activation of the nervous system (e.g., vagal or sympathetic activation). The physiological background of the possible mechanisms of these electrical modalities and their potential application to treat heart failure are discussed

    Electrical and Mechanical Ventricular Activation During Left Bundle Branch Block and Resynchronization

    Get PDF
    Cardiac resynchronization therapy (CRT) aims to treat selected heart failure patients suffering from conduction abnormalities with left bundle branch block (LBBB) as the culprit disease. LBBB remained largely underinvestigated until it became apparent that the amount of response to CRT was heterogeneous and that the therapy and underlying pathology were thus incompletely understood. In this review, current knowledge concerning activation in LBBB and during biventricular pacing will be explored and applied to current CRT practice, highlighting novel ways to better measure and treat the electrical substrate

    Comparative transcriptome profiling of amyloid precursor protein family members in the adult cortex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The β-amyloid precursor protein (APP) and the related β-amyloid precursor-like proteins (APLPs) undergo complex proteolytic processing giving rise to several fragments. Whereas it is well established that Aβ accumulation is a central trigger for Alzheimer's disease, the physiological role of APP family members and their diverse proteolytic products is still largely unknown. The secreted APPsα ectodomain has been shown to be involved in neuroprotection and synaptic plasticity. The γ-secretase-generated APP intracellular domain (AICD) functions as a transcriptional regulator in heterologous reporter assays although its role for endogenous gene regulation has remained controversial.</p> <p>Results</p> <p>To gain further insight into the molecular changes associated with knockout phenotypes and to elucidate the physiological functions of APP family members including their proposed role as transcriptional regulators, we performed DNA microarray transcriptome profiling of prefrontal cortex of adult wild-type (WT), APP knockout (APP<sup>-/-</sup>), APLP2 knockout (APLP2<sup>-/-</sup>) and APPsα knockin mice (APP<sup>α/α</sup>) expressing solely the secreted APPsα ectodomain. Biological pathways affected by the lack of APP family members included neurogenesis, transcription, and kinase activity. Comparative analysis of transcriptome changes between mutant and wild-type mice, followed by qPCR validation, identified co-regulated gene sets. Interestingly, these included heat shock proteins and plasticity-related genes that were both down-regulated in knockout cortices. In contrast, we failed to detect significant differences in expression of previously proposed AICD target genes including <it>Bace1</it>, <it>Kai1</it>, <it>Gsk3b</it>, <it>p53</it>, <it>Tip60</it>, and <it>Vglut2</it>. Only <it>Egfr </it>was slightly up-regulated in APLP2<sup>-/- </sup>mice. Comparison of APP<sup>-/- </sup>and APP<sup>α/α </sup>with wild-type mice revealed a high proportion of co-regulated genes indicating an important role of the C-terminus for cellular signaling. Finally, comparison of APLP2<sup>-/- </sup>on different genetic backgrounds revealed that background-related transcriptome changes may dominate over changes due to the knockout of a single gene.</p> <p>Conclusion</p> <p>Shared transcriptome profiles corroborated closely related physiological functions of APP family members in the adult central nervous system. As expression of proposed AICD target genes was not altered in adult cortex, this may indicate that these genes are not affected by lack of APP under resting conditions or only in a small subset of cells.</p

    Cardiac resynchronization therapy guided by cardiovascular magnetic resonance

    Get PDF
    Cardiac resynchronization therapy (CRT) is an established treatment for patients with symptomatic heart failure, severely impaired left ventricular (LV) systolic dysfunction and a wide (> 120 ms) complex. As with any other treatment, the response to CRT is variable. The degree of pre-implant mechanical dyssynchrony, scar burden and scar localization to the vicinity of the LV pacing stimulus are known to influence response and outcome. In addition to its recognized role in the assessment of LV structure and function as well as myocardial scar, cardiovascular magnetic resonance (CMR) can be used to quantify global and regional LV dyssynchrony. This review focuses on the role of CMR in the assessment of patients undergoing CRT, with emphasis on risk stratification and LV lead deployment
    corecore