18,974 research outputs found

    Fracture of complex metallic alloys: An atomistic study of model systems

    Full text link
    Molecular dynamics simulations of crack propagation are performed for two extreme cases of complex metallic alloys (CMAs): In a model quasicrystal the structure is determined by clusters of atoms, whereas the model C15 Laves phase is a simple periodic stacking of a unit cell. The simulations reveal that the basic building units of the structures also govern their fracture behaviour. Atoms in the Laves phase play a comparable role to the clusters in the quasicrystal. Although the latter are not rigid units, they have to be regarded as significant physical entities.Comment: 6 pages, 4 figures, for associated avi file, see http://www.itap.physik.uni-stuttgart.de/~frohmut/MOVIES/C15.LJ.011.100.av

    Dynamic fracture of icosahedral model quasicrystals: A molecular dynamics study

    Full text link
    Ebert et al. [Phys. Rev. Lett. 77, 3827 (1996)] have fractured icosahedral Al-Mn-Pd single crystals in ultrahigh vacuum and have investigated the cleavage planes in-situ by scanning tunneling microscopy (STM). Globular patterns in the STM-images were interpreted as clusters of atoms. These are significant structural units of quasicrystals. The experiments of Ebert et al. imply that they are also stable physical entities, a property controversially discussed currently. For a clarification we performed the first large scale fracture simulations on three-dimensional complex binary systems. We studied the propagation of mode I cracks in an icosahedral model quasicrystal by molecular dynamics techniques at low temperature. In particular we examined how the shape of the cleavage plane is influenced by the clusters inherent in the model and how it depends on the plane structure. Brittle fracture with no indication of dislocation activity is observed. The crack surfaces are rough on the scale of the clusters, but exhibit constant average heights for orientations perpendicular to high symmetry axes. From detailed analyses of the fractured samples we conclude that both, the plane structure and the clusters, strongly influence dynamic fracture in quasicrystals and that the clusters therefore have to be regarded as physical entities.Comment: 10 pages, 12 figures, for associated avi files, see http://www.itap.physik.uni-stuttgart.de/~frohmut/MOVIES/emitted_soundwaves.avi and http://www.itap.physik.uni-stuttgart.de/~frohmut/MOVIES/dynamic_fracture.av

    Quasicrystalline Order in Binary Dipolar Systems

    Full text link
    Motivated by recent experimental findings, we investigate the possible occurrence and characteristics of quasicrystalline order in two-dimensional mixtures of point dipoles with two sorts of dipole moments. Despite the fact that the dipolar interaction potential does not exhibit an intrinsic length scale and cannot be tuned a priori to support the formation of quasicrystalline order, we find that configurations with long--range quasicrystallinity yield minima in the potential energy surface of the many particle system. These configurations emanate from an ideal or perturbed ideal decoration of a binary tiling by steepest descent relaxation. Ground state energy calculations of alternative ordered states and parallel tempering Monte-Carlo simulations reveal that the quasicrystalline configurations do not correspond to a thermodynamically stable state. On the other hand, steepest descent relaxations and conventional Monte-Carlo simulations suggest that they are rather robust against fluctuations. Local quasicrystalline order in the disordered equilibrium states can be strong.Comment: 10 pages, 7 figure

    Polymeric forms of carbon in dense lithium carbide

    Full text link
    The immense interest in carbon nanomaterials continues to stimulate intense research activities aimed to realize carbon nanowires, since linear chains of carbon atoms are expected to display novel and technologically relevant optical, electrical and mechanical properties. Although various allotropes of carbon (e.g., diamond, nanotubes, graphene, etc.) are among the best known materials, it remains challenging to stabilize carbon in the one-dimensional form because of the difficulty to suitably saturate the dangling bonds of carbon. Here, we show through first-principles calculations that ordered polymeric carbon chains can be stabilized in solid Li2_2C2_2 under moderate pressure. This pressure-induced phase (above 5 GPa) consists of parallel arrays of twofold zigzag carbon chains embedded in lithium cages, which display a metallic character due to the formation of partially occupied carbon lone-pair states in \emph{sp}2^2-like hybrids. It is found that this phase remains the most favorable one in a wide range of pressure. At extreme pressure (larger the 215 GPa) a structural and electronic phase transition towards an insulating single-bonded threefold-coordinated carbon network is predicted.Comment: 10 pages, 6 figure

    Atomic Bose and Anderson glasses in optical lattices

    Full text link
    An ultra cold atomic Bose gas in an optical lattice is shown to provide an ideal system for the controlled analysis of disordered Bose lattice gases. This goal may be easily achieved under the current experimental conditions, by introducing a pseudo-random potential created by a second additional lattice or, alternatively, by placing a speckle pattern on the main lattice. We show that for a non commensurable filling factor, in the strong interaction limit, a controlled growing of the disorder drives a dynamical transition from superfluid to Bose-glass phase. Similarly, in the weak interaction limit, a dynamical transition from superfluid to Anderson-glass phase may be observed. In both regimes, we show that even very low-intensity disorder-inducing lasers cause large modifications of the superfluid fraction of the system.Comment: 4 pages, 3 figures. Minor changes. To appear in Phys. Rev. Lett. (2003

    Phase behavior of a confined nano-droplet in the grand-canonical ensemble: the reverse liquid-vapor transition

    Full text link
    The equilibrium density distribution and thermodynamic properties of a Lennard-Jones fluid confined to nano-sized spherical cavities at constant chemical potential was determined using Monte Carlo simulations. The results describe both a single cavity with semipermeable walls as well as a collection of closed cavities formed at constant chemical potential. The results are compared to calculations using classical Density Functional Theory (DFT). It is found that the DFT calculations give a quantitatively accurate description of the pressure and structure of the fluid. Both theory and simulation show the presence of a ``reverse'' liquid-vapor transition whereby the equilibrium state is a liquid at large volumes but becomes a vapor at small volumes.Comment: 13 pages, 8 figures, to appear in J. Phys. : Cond. Mat

    About the dynamics and thermodynamics of trapped ions

    Full text link
    This tutorial introduces the dynamics of charged particles in a radiofrequency trap in a very general manner to point out the differences between the dynamics in a quadrupole and in a multipole trap. When dense samples are trapped, the dynamics is modified by the Coulomb repulsion between ions. To take into account this repulsion, we propose to use a method, originally developed for particles in Penning trap, that model the ion cloud as a cold fluid. This method can not reproduce the organisation of cold clouds as crystals but it allows one to scale the size of large samples with the trapping parameters and the number of ions trapped, for different linear geometries of trap.Comment: accepted for publication in the "Modern Applications of Trapped Ions" special issu

    Charge Transfer and Charge Broadening of GEM Structures in High Magnetic Fields

    Full text link
    We report on measurements of charge transfer in GEM structures in high magnetic fields. These were performed in the framework of the R&D work for a Time Projection Chamber at a future Linear Collider. A small test chamber has been installed into the aperture of a superconducting magnet with the GEM structures mounted perpendicular to the B field direction. The charge transfer is derived from the electrical currents monitored during irradiation with an 55{}^{55}Fe source. No severe loss of primary ionisation charge is observed, but an improved ion feedback suppression is achieved for high magnetic fields. Additionally, the width of the charge cloud released by individual 55{}^{55}Fe photons is measured using a finely segmented strip readout after the triple GEM structure. Charge widths between 0.3 and 0.5 mm RMS are observed, which originate from the charge broadening inside the GEM readout. This charge broadening is only partly suppressed at high magnetic fields.Comment: 11 pages, 9 figure

    Magnetocaloric Study of Spin Relaxation in `Frozen' Dipolar Spin Ice Dy2Ti2O7

    Full text link
    The magnetocaloric effect of polycrystalline samples of pure and Y-doped dipolar spin ice Dy2Ti2O7 was investigated at temperatures from nominally 0.3 K to 6 K and in magnetic fields of up to 2 T. As well as being of intrinsic interest, it is proposed that the magnetocaloric effect may be used as an appropriate tool for the qualitative study of slow relaxation processes in the spin ice regime. In the high temperature regime the temperature change on adiabatic demagnetization was found to be consistent with previously published entropy versus temperature curves. At low temperatures (T < 0.4 K) cooling by adiabatic demagnetization was followed by an irreversible rise in temperature that persisted after the removal of the applied field. The relaxation time derived from this temperature rise was found to increase rapidly down to 0.3 K. The data near to 0.3 K indicated a transition into a metastable state with much slower relaxation, supporting recent neutron scattering results. In addition, magnetic dilution of 50 % concentration was found to significantly prolong the dynamical response in the milikelvin temperature range, in contrast with results reported for higher temperatures at which the spin correlations are suppressed. These observations are discussed in terms of defects and loop correlations in the spin ice state.Comment: 9 figures, submitted to Phys. Rev.
    • …
    corecore