319 research outputs found

    Micrometric particles twodimensional self-assembly during drying of liquid film

    Full text link
    We computed the self-organisation process of a monodisperse collection of spherical micrometric particles trapped in a two-dimensional (2D) thin liquid film isothermally dried on a chemically inert substrate. The substrate is either flat or indented to create linear stripes on its surface. The numerical results are illustrated and discussed in the light of experimental ones obtained from the drying of diamond particles water based suspension (d50=10ÎŒmd_{50} = 10 \mu m) on a glass substrate. The drying of the suspension on a flat substrate leads to the formation of linear patterns and small clusters of micrometric particles distributed over the whole surface of the substrate, whereas the drying of the suspension on a indented substrate leads to the aggregation of the particles along one side of the stripe which has a higher roughness than the other side of the stripe. This is an easy experimental way to obtain colloidal selforganized patterns.Comment: 16 pages 7 figure

    Monte Carlo approach of the islanding of polycrystalline thin films

    Full text link
    We computed by a Monte Carlo method derived from the Solid on Solid model, the evolution of a polycrystalline thin film deposited on a substrate during thermal treatment. Two types of substrates have been studied: a single crystalline substrate with no defects and a single crystalline substrate with defects. We obtain islands which are either flat (i.e. with a height which does not overcome a given value) or grow in height like narrow towers. A good agreement was found regarding the morphology of numerical nanoislands at equilibrium, deduced from our model, and experimental nanoislands resulting from the fragmentation of YSZ thin films after thermal treatment.Comment: 20 pages, 7 figure

    Kontribusi Agroforestri terhadap Pendapatan Petani di Desa Sukoharjo 1 Kecamatan Sukoharjo Kabupaten Pringsewu

    Full text link
    Agroforestry is one form of land use in multicrown consisting of a mixture of the trees, shrubs with an annual or plants often accompanied by cattle in one plots of land.System agroforestri of benefits economical and ecological that matter to farmers, one of which can provide income for farmers.Research is to calculate what large contribution agroforestri and to know faktor-faktor affecting farmers income. The study is done in the Village Sukoharjo 1 Sub-District Sukoharjo District Pringsewu.Contribution agroforestry expressed in the percentage revenue agroforestri with total revenue farmer.To analyze factors affecting farmers' income analyzed by linear regression of multiple.From the reckoning, contribution agroforestri against revenue is 88,31% or Rp 50.142.696,00/kk/ha/year and results regression analysis variables influential real against earnings agroforestri is age, the area of field, the amount of labor, tribe, religion, landslope and credit assistance

    Modified-atmosphere packaging of hen table eggs: Effects on pathogen and spoilage bacteria

    Get PDF
    Abstract As part of a more comprehensive research activity on the use of modified-atmosphere packaging for the improvement of quality and functional properties of table eggs, the effects of air, 100% CO2, and 100% O2 packaging were also evaluated on the survival of experimentally inoculated pathogen bacteria (Salmonella Enteritidis, Escherichia coli, and Listeria monocytogenes) as well as on spoilage bacteria (total aerobic mesophilic bacteria) on table eggs during 30 d of storage at 4, 25, and 37°C by colony count method. In general, temperatures played a major role, rather than gasses, in influencing the bacterial survival. In particular, the lowest microbial loads were registered at 4°C on E. coli and spoilage bacteria, whereas 37°C was the best storage temperature to avoid the psychrotropic microorganism L. monocytogenes development regardless of the gas used. One hundred percent CO2 packaging, in association with a low storage temperature (4°C), had a significant positive effect in reducing Salmonella loads. On eggs inoculated with L. monocytogenes and stored at 4°C as well as on eggs containing only spoilage bacteria and stored at 25°C, 100% CO2 resulted the best gas in comparison with air and O2. One hundred percent CO2 packaging showed no negative effect on pathogen survival compared with air. Although further improvements are required to control RH within packaging to limit bacteria growth/survival, in view of the positive effects of CO2 packaging on quality traits of table eggs, 100% CO2 packaging might represent a promising innovative technique for the maintenance of egg characteristics during transport, retail, and domestic storage

    Acetic acid ketonization over Fe3O4/SiO2 for pyrolysis bio-oil upgrading

    Get PDF
    A family of silica supported, magnetite nanoparticle catalysts was synthesized and investigated for continuous flow acetic acid ketonization as a model pyrolysis bio-oil upgrading reaction. Physicochemical properties of Fe3O4/SiO2 catalysts were characterized by HRTEM, XAS, XPS, DRIFTS, TGA and porosimetry. Acid site densities were inversely proportional to Fe3O4 particle size, although acid strength and Lewis character were size invariant, and correlated with the specific activity for vapor phase acetic ketonization to acetone. A constant activation energy (~110 kJ.mol-1), turnover frequency (~13 h-1) and selectivity to acetone of 60 % were observed for ketonization across the catalyst series, implicating Fe3O4 as the principal active component of Red Mud waste

    Interface energies of (100)_{YSZ} and (111)_{YSZ} epitaxial islands on (0001)_{alpha-Al_2O_3} substrates from first principles

    Full text link
    We present an ab initio study of the interface energies of cubic yttria-stabilized zirconia (YSZ) epitaxial layers on a (0001)_{alpha-Al_2O_3} substrate. The interfaces are modelled using a supercell geometry and the calculations are carried out in the framework of density-functional theory (DFT) and the local-density approximation (LDA) using the projector-augmented-wave (PAW) pseudopotential approach. Our calculations clearly demonstrate that the (111)_{YSZ} || (0001)_{alpha-Al_2O_3} interface energy is lower than that of (100)_{YSZ} || (0001)_{alpha-Al_2O_3}. This result is central to understanding the behaviour of YSZ thin solid film islanding on (0001)_{alpha-Al_2O_3} substrates, either flat or in presence of defects.Comment: 25 pages, 5 figures, 10 tables, submitted to Physical Review

    Intracrine endorphinergic systems in modulation of myocardial differentiation

    Get PDF
    A wide variety of peptides not only interact with the cell surface, but govern complex signaling from inside the cell. This has been referred to as an "intracrine" action, and the orchestrating molecules as "intracrines". Here, we review the intracrine action of dynorphin B, a bioactive end-product of the prodynorphin gene, on nuclear opioid receptors and nuclear protein kinase C signaling to stimulate the transcription of a gene program of cardiogenesis. The ability of intracrine dynorphin B to prime the transcription of its own coding gene in isolated nuclei is discussed as a feed-forward loop of gene expression amplification and synchronization. We describe the role of hyaluronan mixed esters of butyric and retinoic acids as synthetic intracrines, controlling prodynorphin gene expression, cardiogenesis, and cardiac repair. We also discuss the increase in prodynorphin gene transcription and intracellular dynorphin B afforded by electromagnetic fields in stem cells, as a mechanism of cardiogenic signaling and enhancement in the yield of stem cell-derived cardiomyocytes. We underline the possibility of using the diffusive features of physical energies to modulate intracrinergic systems without the needs of viral vector-mediated gene transfer technologies, and prompt the exploration of this hypothesis in the near future

    Tunable Silver-Functionalized Porous Frameworks for Antibacterial Applications

    Get PDF
    Healthcare-associated infections and the rise of drug-resistant bacteria pose significant challenges to existing antibiotic therapies. Silver nanocomposites are a promising solution to the current crisis, however their therapeutic application requires improved understanding of underpinning structure-function relationships. A family of chemically and structurally modified mesoporous SBA-15 silicas were synthesized as porous host matrices to tune the physicochemical properties of silver nanoparticles. Physicochemical characterization by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption near-edge spectroscopy (XANES) and porosimetry demonstrate that functionalization by a titania monolayer and the incorporation of macroporosity both increase silver nanoparticle dispersion throughout the silica matrix, thereby promoting Ag₂CO₃ formation and the release of ionic silver in simulated tissue fluid. The Ag₂CO₃ concentration within functionalized porous architectures is a strong predictor for antibacterial efficacy against a broad spectrum of pathogens, including C. difficile and methicillin-resistant Staphylococcus aureus (MRSA)

    Defect Engineering of Ta3N5 Photoanodes: Enhancing Charge Transport and Photoconversion Efficiencies via Ti Doping

    Get PDF
    While Ta3N5 shows excellent potential as a semiconductor photoanode for solar water splitting, its performance is hindered by poor charge carrier transport and trapping due to native defects that introduce electronic states deep within its bandgap. Here, it is demonstrated that controlled Ti doping of Ta3N5 can dramatically reduce the concentration of deep-level defects and enhance its photoelectrochemical performance, yielding a sevenfold increase in photocurrent density and a 300 mV cathodic shift in photocurrent onset potential compared to undoped material. Comprehensive characterization reveals that Ti4+ ions substitute Ta5+ lattice sites, thereby introducing compensating acceptor states, reducing the concentrations of deleterious nitrogen vacancies and reducing Ta3+ states, and thereby suppressing trapping and recombination. Owing to the similar ionic radii of Ti4+ and Ta5+, substitutional doping does not introduce lattice strain or significantly affect the underlying electronic structure of the host semiconductor. Furthermore, Ti can be incorporated without increasing the oxygen donor content, thereby enabling the electrical conductivity to be tuned by over seven orders of magnitude. Thus, Ti doping of Ta3N5 provides a powerful basis for precisely engineering its optoelectronic characteristics and to substantially improve its functional characteristics as an advanced photoelectrode for solar fuels applications

    Glioblastoma cusa fluid protein profiling: A comparative investigation of the core and peripheral tumor zones

    Get PDF
    The present investigation aimed to characterize the protein profile of cavitating ultrasound aspirator fluid of newly diagnosed and recurrent glioblastoma comparing diverse zones of collection, i.e., tumor core and tumor periphery, with the aid of 5\u2010aminolevulinic acid fluorescence. The samples were pooled and analyzed in triplicate by LC\u2010MS following the shotgun proteomic approach. The identified proteins were then grouped to disclose elements exclusive and common to the tumor state or tumor zones and submitted to gene ontology classification and pathway overrepresentation analysis. The proteins common to the distinct zones were further investigated by relative quantitation, following a label free approach, to disclose possible differences of expression. Nine proteins, i.e., tubulin 2B chain, CD59, far upstream element\u2010binding, CD44, histone H1.4, caldesmon, osteopontin, tropomyosin chain and metallothionein\u20102, marked the core of newly diagnosed glioblastoma with respect to tumor periphery. Considering the tumor zone, including the core and the fluorescence positive periphery, the serine glycine biosynthesis, pentose phosphate, 5\u2010 hydroxytryptamine degredation, de novo purine biosynthesis and huntington disease pathways resulted statistically significantly overrepresented with respect to the human genome of reference. The fluorescence negative zone shared several protein elements with the tumor zone, possibly indicating the presence of pathological aspects of glioblastoma rather than of normal brain parenchyma. On the other hand, its exclusive protein elements were considered to represent the healthy zone and, accordingly, exhibiting no pathways overrepresentation. On the contrary to newly diagnosed glioblastoma, pathway overrepresentation was recognized only in the healthy zone of recurrent glioblastoma. The TGF\u3b2 signaling pathway, exclusively classified in the fluorescence negative periphery in newly diagnosed glioblastoma, was instead the exclusive pathway classified in the tumor core of recurrent glioblastoma. These results, preliminary obtained on sample pools, demonstrated the potential of cavitron ultrasonic sur gical aspirate fluid for proteomic profiling of glioblastoma able to distinguish molecular features specific of the diverse tumor zones and tumor states, possibly contributing to the understanding of the highly infiltrative capability and recurrent rate of this aggressive brain tumor and opening to potential clinical applications to be further investigated
    • 

    corecore