959 research outputs found

    Multiperiod portfolio optimization with multiple risky assets and general transaction costs

    Get PDF
    We analyze the optimal portfolio policy for a multiperiod mean-variance investor facing multiple risky assets in the presence of general transaction costs. For proportional transaction costs, we give a closed-form expression for a no-trade region, shaped as a multi-dimensional parallelogram, and show how the optimal portfolio policy can be efficiently computed for many risky assets by solving a single quadratic program. For market impact costs, we show that at each period it is optimal to trade to the boundary of a state-dependent rebalancing region. Finally, we show empirically that the losses associated with ignoring transaction costs and behaving myopically may be large

    Development of a Web System-based Geographic Information System Technologies to Mapping Electromagnetic Fields: First Developments

    Get PDF
    The purpose of this research work is to make decisions about the exposure levels of people to radiation, for which, the Web System based on GIS technology (DECOMAPS) was developed for mapping electromagnetic fields in the city of Riobamba. This system executes analysis, search, creation, automation of processes, and mapping activities of electromagnetic fields. The system was developed on an agile development methodology called SCRUM, which allows to create an optimal and interactive work environment between the product owner and the developers in order to create a quality system. Many technological tools were applied by the developer of this system. Once successfully completed, the system was subjected to tests of functionality and usability of the final product through quality metrics established by ISO 9126-3, where it was determined that the system is 93.64% functional, in addition to a 94.40% in usability. Concluding that the system is functional and can be implemented as a contribution in research to be developed in the future on the effects of electromagnetic fields on the human body.     Keywords: OpenGeo Suite, Java, SCRUM, ISO 9126-3, DECOMAP

    Response of mycorrhizal Touriga Nacional variety grapevines to high temperatures measured by calorespirometry and near-infrared spectroscopy

    Get PDF
    Heat stress negatively affects several physiological and biochemical processes in grapevine plants. In this work, two new methods, calorespirometry, which has been used to determine temperature adaptation in plants, and near-infrared (NIR) spectroscopy, which has been used to determine several grapevine-related traits and to discriminate among varieties, were tested to evaluate grapevine response to high temperatures. ‘Touriga Nacional’ variety grapevines, inoculated or not with Rhizoglomus irregulare or Funneliformis mosseae, were used in this study. Calorespirometric parameters and NIR spectra, as well as other parameters commonly used to assess heat injury in plants, were measured before and after high temperature exposure. Growth rate and substrate carbon conversion effciency, calculated from calorespirometric measurements, and stomatal conductance, were the most sensitive parameters for discriminating among high temperature responses of control and inoculated grapevines. The results revealed that, although this vine variety can adapt its physiology to temperatures up to 40 ºC, inoculation with R. irregulare could additionally help to sustain its growth, especially after heat shocks. Therefore, the combination of calorespirometry together with gas exchange measurements is a promising strategy for screening grapevine heat tolerance under controlled conditions and has high potential to be implemented in initial phases of plant breeding programsinfo:eu-repo/semantics/publishedVersio

    A Hybrid model for the origin of photoluminescence from Ge nanocrystals in SiO2_2 matrix

    Full text link
    In spite of several articles, the origin of visible luminescence from germanium nanocrystals in SiO2_2 matrix is controversial even today. Some authors attribute the luminescence to quantum confinement of charge carriers in these nanocrystals. On the other hand, surface or defect states formed during the growth process, have also been proposed as the source of luminescence in this system. We have addressed this long standing query by simultaneous photoluminescence and Raman measurements on germanium nanocrystals embedded in SiO2_2 matrix, grown by two different techniques: (i) low energy ion-implantation and (ii) atom beam sputtering. Along with our own experimental observations, we have summarized relevant information available in the literature and proposed a \emph{Hybrid Model} to explain the visible photoluminescence from nanocrystalline germanium in SiO2_2 matrix.Comment: 23 pages, 8 figure
    corecore