7,815 research outputs found

    Propagation of localized surface plasmons in sets of metallic nanocylinders at the exit of subwavelength slits

    Full text link
    We analyze, by means of numerical simulations, transmission enhancements through sub- wavelength slits due to the presence of sets of plasmonic nanocylinders, placed near the exit of these apertures. Further, we extend this study to photonic crystals of dipolar plasmonic particles in front of an array of extraordinarily transmitting slits practiced in a metallic slab.Comment: 20 pages, 9 figures. Submitted to Journal of Nanophotonic

    Importance of interlinguistic similarity and stable bilingualism when two languages compete

    Get PDF
    In order to analyze the dynamics of two languages in competition, one approach is to fit historical data on their numbers of speakers with a mathematical model in which the parameters are interpreted as the similarity between those languages and their relative status. Within this approach, we show here, on the basis of a detailed analysis and extensive calculations, the outcomes that can emerge for given values of these parameters. Contrary to previous results, it is possible that in the long term both languages coexist and survive. This happens only when there is a stable bilingual group, and this is possible only if the competing languages are sufficiently similar, in which case its occurrence is favoured by both similarity and status symmetry.Comment: to appear in New Journal of Physic

    Heisenberg-type higher order symmetries of superintegrable systems separable in cartesian coordinates

    Get PDF
    Heisenberg-type higher order symmetries are studied for both classical and quantum mechanical systems separable in cartesian coordinates. A few particular cases of this type of superintegrable systems were already considered in the literature, but here they are characterized in full generality together with their integrability properties. Some of these systems are defined only in a region of Rn\mathbb R^n, and in general they do not include bounded solutions. The quantum symmetries and potentials are shown to reduce to their superintegrable classical analogs in the ℏ→0\hbar \to0 limit.Comment: 23 Pages, 3 figures, To appear in Nonlinearit

    Optical binding of cylinder photonic molecules in the near-field of partially coherent fluctuating Gaussian Schell model sources. A coherent mode representation

    Get PDF
    We present a theory and computation method of radiation pressure from partially coherent light by establishing a coherent mode representation of the radiation forces. This is illustrated with the near field emitted from a Gaussian Schell model source, mechanically acting on a single cylinder with magnetodielectric behavior, or on a photonic molecule constituted by a pair of such cylinders. Thus after studying the force produced by a single particle, we address the effects of the spatial coherence on the bonding and anti-bonding states of two particles. The coherence length manifests the critical limitation of the contribution of evanescent modes to the scattered fields, and hence to the nature and strength of the electromagnetic fores, even when electric and/or magnetic partial wave resonances are excited

    Towards an Ashtekar formalism in eight dimensions

    Full text link
    We investigate the possibility of extending the Ashtekar theory to eight dimensions. Our approach relies on two notions: the octonionic structure and the MacDowell-Mansouri formalism generalized to a spacetime of signature 1+7. The key mathematical tool for our construction is the self-dual (antiself-dual) four-rank fully antisymmetric octonionic tensor. Our results may be of particular interest in connection with a possible formulation of M-theory via matroid theory.Comment: 15 pages, Latex, minor changes, to appear in Class. Quantum Gra

    Influence of the Ground-State Topology on the Domain-Wall Energy in the Edwards-Anderson +/- J Spin Glass Model

    Get PDF
    We study the phase stability of the Edwards-Anderson spin-glass model by analyzing the domain-wall energy. For the bimodal distribution of bonds, a topological analysis of the ground state allows us to separate the system into two regions: the backbone and its environment. We find that the distributions of domain-wall energies are very different in these two regions for the three dimensional (3D) case. Although the backbone turns out to have a very high phase stability, the combined effect of these excitations and correlations produces the low global stability displayed by the system as a whole. On the other hand, in two dimensions (2D) we find that the surface of the excitations avoids the backbone. Our results confirm that a narrow connection exists between the phase stability of the system and the internal structure of the ground-state. In addition, for both 3D and 2D we are able to obtain the fractal dimension of the domain wall by direct means.Comment: 4 pages, 3 figures. Accepted for publication in Rapid Communications of Phys. Rev.
    • …
    corecore