440 research outputs found

    Caractérisation des sous-produits d'oxydation des boues en conditions sous-critiques et supercritiques

    Get PDF
    L'élimination de la matière organique et la réduction de volume des boues peuvent être obtenues par incinération, par oxydation sous pression en milieu humide ("wet air oxidation") ou par combustion en eau supercritique ("supercritical water oxidation"). Une étude en autoclave agité a permis de comparer sur une même boue d'épuration les performances des deux techniques d'oxydation voie humide et d'oxydation supercritique, en mettant l'accent sur les sous-produits résiduels en phase liquide et la composition de la phase gaz. Les résultats obtenus montrent que l'élimination de la DCO dépend fortement de la température: l'abattement de la DCO passe de 70 % à 235 °C à 94 % à 430 °C. L'azote organique de la boue est transformé en NH4+ mais seule une élimination limitée de l'azote totale est obtenue à 430 °C. Les sous-produits résiduels dans la phase liquide sont constitués en majorité d'acides gras, d'aldéhydes et de cétones, l'acide acétique étant prédominant. Hormis le CO2, les sous-produits gazeux majeurs formés par des réactions complexes comme la pyrolyse, le réformage et la méthanation sont CO, H2 et CH4. Dans les conditions supercritiques, tous les sous-produits gazeux sont fortement oxydés. L'augmentation de la température de traitement permet d'obtenir un résidu solide de plus en plus inerte, les cendres obtenues en conditions supercritiques contenant moins de 1 % de matière organique. Les performances des deux procédés étudiés laissent envisager leur développement à moyen terme comme voies alternatives d'élimination des boues.ContextAs the number of wastewater treatment plants increases, and the efficiency of treatment improves, the problem of how to dispose of the ever increasing amounts of generated sludge has intensified. For the beginning of the next century 1 million tons of sludge will be produced annually in France; disposal in landfills will be impossible and agricultural use could be limited by tight quality standards. Therefore, the development of effective and acceptable sludge processes is urgently needed.Destruction of organic matter in sludge and large reductions in sludge volume are achieved either by incineration or by wet air oxidation (WAO), which needs no fuel and generates no smoke, fly ash or emissions of NOx and SO2. Supercritical water oxidation (SCWO) offers an attractive alternative. Water, above its vapor-liquid critical point of 374°C and 221 bar, is an excellent solvent for organic compounds and becomes completely miscible with oxygen. Reported results of sewage sludge SCWO demonstrate rapid and effective treatment. The objective of this study was to compare sub- and supercritical water oxidation of sludge in terms of organic matter destruction and formation of by-products in both gas and liquid phases. MethodologyOxidation of sludge was studied in a 0.5 L batch reactor rated for 450°C-300 bar. The raw material was a biological sludge containing 4% solids with a chemical oxygen demand (COD) value of 52 g/L. In the standard experimental procedure, 100 mL sludge were heated up to reaction temperature and oxygen was then introduced in 50% excess with respect to COD. Heating was maintained during 1 hour before slow cooling to room temperature. The overall organic destruction was quantified in terms of total organic carbon (TOC) and COD. Gas and liquid phases sampled at room temperature after reaction were analyzed by gas chromatography (GC). Sulfur and nitrogen species were also analyzed.ResultsWhen the temperature increased from 210 to 383°C, COD destruction increased significantly (Table 1). At 383°C, a COD destruction efficiency of 94.3% was obtained. However, at 430°C, organic matter oxidation was only marginally improved. In WAO tests, considerable acetic acid was produced and remained in the substrate. The produced acetic acid was oxidized rapidly under SCWO conditions. Surprisingly, the concentrations of the other volatile fatty acids (VFA) remained approximately constant between 310 and 430°C (Table 2). In addition to VFA, which represent ca. 50% of the residual COD, oxygenated organic compounds such as aldehydes, ketones and alcohols were produced (Table 3). The data in Table 4 show that decomposition of organic nitrogen compounds into ammonia was completed at 383°C, while nitrates were reduced to N2 by reaction with organic matter and ammonia. NOx were not detected in the gas phase. The low reactivity of ammonia in supercritical water had been previously demonstrated. At 430°C, ammonia removal from sludge was limited to 15%. On the other hand, even in WAO conditions all sulfur species were totally converted to sulfate. Under subcritical conditions, the gas phase contained significant concentrations of hydrogen and carbon monoxide in addition to water, residual oxygen and carbon dioxide. Traces of methane and C2-C3 hydrocarbons were also detected (Figs. 1 and 2). These gases result from a complex chemistry including pyrolysis, steam reforming and water-gas shift. Under supercritical conditions, all these compounds were extensively eliminated by oxidation. Under supercritical conditions the residual solids contained less than 1% organic matter. By X-ray diffraction hydroxyapatite, quartz and kaliophilite were identified in the residual solids.These results confirm that supercritical water oxidation is a new sludge treatment concept of great interest. The degree of conversion of organic carbon is high, while liquid and especially gaseous by- products are produced in minor amounts compared to subcritical conditions. Temperatures higher than 430°C would be needed for substantial nitrogen removal

    Electron states of mono- and bilayer graphene on SiC probed by STM

    Full text link
    We present a scanning tunneling microscopy (STM) study of a gently-graphitized 6H-SiC(0001) surface in ultra high vacuum. From an analysis of atomic scale images, we identify two different kinds of terraces, which we unambiguously attribute to mono- and bilayer graphene capping a C-rich interface. At low temperature, both terraces show (3×3)(\sqrt{3}\times \sqrt{3}) quantum interferences generated by static impurities. Such interferences are a fingerprint of π\pi-like states close to the Fermi level. We conclude that the metallic states of the first graphene layer are almost unperturbed by the underlying interface, in agreement with recent photoemission experiments (A. Bostwick et al., Nature Physics 3, 36 (2007))Comment: 4 pages, 3 figures submitte

    Evaluation of Extratropical Cyclone Precipitation in the North Atlantic Basin: An analysis of ERA-Interim, WRF, and two CMIP5 models

    Full text link
    The representation of extratropical cyclones (ETCs) precipitation in general circulation models (GCMs) and a weather research and forecasting (WRF) model is analyzed. This work considers the link between ETC precipitation and dynamical strength and tests if parameterized convection affects this link for ETCs in the North Atlantic Basin. Lagrangian cyclone tracks of ETCs in ERA-Interim reanalysis (ERAI), the GISS and GFDL CMIP5 models, and WRF with two horizontal resolutions are utilized in a compositing analysis. The 20-km resolution WRF model generates stronger ETCs based on surface wind speed and cyclone precipitation. The GCMs and ERAI generate similar composite means and distributions for cyclone precipitation rates, but GCMs generate weaker cyclone surface winds than ERAI. The amount of cyclone precipitation generated by the convection scheme differs significantly across the datasets, with GISS generating the most, followed by ERAI and then GFDL. The models and reanalysis generate relatively more parameterized convective precipitation when the total cyclone-averaged precipitation is smaller. This is partially due to the contribution of parameterized convective precipitation occurring more often late in the ETC life cycle. For reanalysis and models, precipitation increases with both cyclone moisture and surface wind speed, and this is true if the contribution from the parameterized convection scheme is larger or not. This work shows that these different models generate similar total ETC precipitation despite large differences in the parameterized convection, and these differences do not cause unexpected behavior in ETC precipitation sensitivity to cyclone moisture or surface wind speed

    Diagnosing Warm Frontal Cloud Formation in a GCM: A Novel Approach Using Conditional Subsetting

    Get PDF
    This study analyzes characteristics of clouds and vertical motion across extratropical cyclone warm fronts in the NASA Goddard Institute for Space Studies general circulation model. The validity of the modeled clouds is assessed using a combination of satellite observations from CloudSat, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), and the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. The analysis focuses on developing cyclones, to test the model's ability to generate their initial structure. To begin, the extratropical cyclones and their warm fronts are objectively identified and cyclone-local fields are mapped into a vertical transect centered on the surface warm front. To further isolate specific physics, the cyclones are separated using conditional subsetting based on additional cyclone-local variables, and the differences between the subset means are analyzed. Conditional subsets are created based on 1) the transect clouds and 2) vertical motion; 3) the strength of the temperature gradient along the warm front, as well as the storm-local 4) wind speed and 5) precipitable water (PW). The analysis shows that the model does not generate enough frontal cloud, especially at low altitude. The subsetting results reveal that, compared to the observations, the model exhibits a decoupling between cloud formation at high and low altitudes across warm fronts and a weak sensitivity to moisture. These issues are caused in part by the parameterized convection and assumptions in the stratiform cloud scheme that are valid in the subtropics. On the other hand, the model generates proper covariability of low-altitude vertical motion and cloud at the warm front and a joint dependence of cloudiness on wind and PW

    Calcium Carbonate Suppresses Haem Toxicity Markers without Calcium Phosphate Side Effect on Colon Carcinogenesis

    Get PDF
    Red meat intake is associated with increased risk of colorectal cancer. We have previously shown that haemin, haemoglobin and red meat promote carcinogen-induced preneoplastic lesions, aberrant crypt foci, in the colon of rats. We have also shown that dietary calcium phosphate inhibits haemin-induced promotion, and normalizes faecal lipoperoxides and cytotoxicity. Unexpectedly, high-calcium phosphate control diet-fed rats had more preneoplastic lesions in the colon than low-calcium control diet-fed rats. The present study was designed to find a calcium supplementation with no adverse effect, by testing several doses and types of calcium salts. One in vitro study and two short-term studies in rats identified calcium carbonate as the most effective calcium salt to bind haem in vitro and to decrease faecal biomarkers previously associated with increased carcinogenesis: faecal water cytotoxicity, thiobarbituric acid reactive substances. A long term carcinogenesis study in dimethylhydrazine-injected rats demonstrated that a diet containing 100 µmol/g calcium carbonate did not promote aberrant crypt foci, in contrast with previously tested calcium phosphate diet. The results suggest that calcium carbonate, and not calcium phosphate, should be used to reduce haem-associated colorectal cancer risk in meat-eaters. They support the concept that the nature of the associated anion to a protective metal ion is important for chemoprevention

    Computer-Assisted Generation of Patterns and Virtual Reality Techniques for Fashion Design

    Get PDF
    We present a methodology for the design of aesthetic patterns and their visualization on virtual clothes. Generated patterns are directly mapped on the dress of a virtual mannequin. Furthermore, patterns sets may be interactively mapped on the virtual dress using a specific 3D interaction technique called Back-and-Forth. Pattern generation involves different mathematical approaches such as iterated function systems (IFS) and nonlinear trajectory models. Both model parameters and color space exploration is performed through a simple user interface. This work contributes to promote both computer assistance in the context of mass customization for fashion design

    Multiple Satellite Observations of Cloud Cover in Extratropical Cyclones

    Get PDF
    Using cloud observations from NASA Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, and CloudSat-CALIPSO, composites of cloud fraction in southern and northern hemisphere extratropical cyclones are obtained for cold and warm seasons between 2006 and 2010, to assess differences between these three data sets, and between summer and winter cyclones. In both hemispheres and seasons, over the open ocean, the cyclone-centered cloud fraction composites agree within 5% across the three data sets, but behind the cold fronts, or over sea ice and land, the differences are much larger. To supplement the data set comparison and learn more about the cyclones, we also examine the differences in cloud fraction between cold and warm season for each data set. The difference in cloud fraction between cold and warm season southern hemisphere cyclones is small for all three data sets, but of the same order of magnitude as the differences between the data sets. The cold-warm season contrast in northern hemisphere cyclone cloud fractions is similar for all three data sets: in the warm sector, the cold season cloud fractions are lower close to the low, but larger on the equator edge than their warm season counterparts. This seasonal contrast in cloud fraction within the cyclones warm sector seems to be related to the seasonal differences in moisture flux within the cyclones. Our analysis suggests that the three different data sets can all be used confidently when studying the warm sector and warm frontal zone of extratropical cyclones but caution should be exerted when studying clouds in the cold sector

    Fast high fidelity quantum non-demolition qubit readout via a non-perturbative cross-Kerr coupling

    Full text link
    Qubit readout is an indispensable element of any quantum information processor. In this work, we experimentally demonstrate a non-perturbative cross-Kerr coupling between a transmon and a polariton mode which enables an improved quantum non-demolition (QND) readout for superconducting qubits. The new mechanism uses the same experimental techniques as the standard QND qubit readout in the dispersive approximation, but due to its non-perturbative nature, it maximizes the speed, the single-shot fidelity and the QND properties of the readout. In addition, it minimizes the effect of unwanted decay channels such as the Purcell effect. We observed a single-shot readout fidelity of 97.4% for short 50 ns pulses, and we quantified a QND-ness of 99% for long measurement pulses with repeated single-shot readouts
    corecore