8,526 research outputs found

    Dressing the electromagnetic nucleon current

    Get PDF
    A field-theory-based approach to pion photoproduction off the nucleon is used to derive a microscopically consistent formulation of the fully dressed electromagnetic nucleon current in an effective Lagrangian formalism. It is shown how the rigorous implementation of local gauge invariance at all levels of the reaction dynamics provides equations that lend themselves to practically manageable truncations of the underlying nonlinearities of the problem. The requirement of consistency also suggests a novel way of treating the pion photoproduction problem. Guided by a phenomenological implementation of gauge invariance for the truncated equations that has proved successful for pion photoproduction, an expression for the fully dressed nucleon current is given that satisfies the Ward-Takahashi identity for a fully dressed nucleon propagator as a matter of course. Possible applications include meson photo- and electroproduction processes, bremsstrahlung, Compton scattering, and eeee' processes off nucleons.Comment: 10 pages, 9 figure

    Techniques for the Fast Simulation of Models of Highly dependable Systems

    Get PDF
    With the ever-increasing complexity and requirements of highly dependable systems, their evaluation during design and operation is becoming more crucial. Realistic models of such systems are often not amenable to analysis using conventional analytic or numerical methods. Therefore, analysts and designers turn to simulation to evaluate these models. However, accurate estimation of dependability measures of these models requires that the simulation frequently observes system failures, which are rare events in highly dependable systems. This renders ordinary Simulation impractical for evaluating such systems. To overcome this problem, simulation techniques based on importance sampling have been developed, and are very effective in certain settings. When importance sampling works well, simulation run lengths can be reduced by several orders of magnitude when estimating transient as well as steady-state dependability measures. This paper reviews some of the importance-sampling techniques that have been developed in recent years to estimate dependability measures efficiently in Markov and nonMarkov models of highly dependable system

    Higgs Chaotic Inflation in Standard Model and NMSSM

    Full text link
    We construct a chaotic inflation model in which the Higgs fields play the role of the inflaton in the standard model as well as in the singlet extension of the supersymmetric standard model. The key idea is to allow a non-canonical kinetic term for the Higgs field. The model is a realization of the recently proposed running kinetic inflation, in which the coefficient of the kinetic term grows as the inflaton field. The inflaton potential depends on the structure of the Higgs kinetic term. For instance, the inflaton potential is proportional to phi^2 and phi^{2/3} in the standard model and NMSSM, respectively. It is also possible to have a flatter inflaton potential.Comment: 5 pages. v2:discussion and references adde

    Pion photoproduction in a dynamical coupled-channel model

    Full text link
    Pion photoproduction reactions are investigated in a dynamical coupled-channel approach based on the Juelich pi-N model, which presently includes the hadronic pi-N and eta-N stable channels as well as the pi-Delta, sigma-N and rho-N effective channels. This model has been quite successful in the description of pi-N to pi-N scattering for center-of-mass energies up to 1.9 GeV. The full pion photoproduction amplitude is constructed to satisfy the generalized Ward-Takahashi identity and hence, it is fully gauge invariant. The calculated differential cross sections and photon spin asymmetries up to 1.65 GeV center-of-mass energy for the reactions gamma p to pi+ n, gamma p to pi0 p and gamma n to pi- p are in good agreement with the experimental data.Comment: Invited talk given at 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU2010), Williamsburg, USA, May 31-June 4 201

    Orienting coupled quantum rotors by ultrashort laser pulses

    Get PDF
    We point out that the non-adiabatic orientation of quantum rotors, produced by ultrashort laser pulses, is remarkably enhanced by introducing dipolar interaction between the rotors. This enhanced orientation of quantum rotors is in contrast with the behavior of classical paired rotors, in which dipolar interactions prevent the orientation of the rotors. We demonstrate also that a specially designed sequence of pulses can most efficiently enhances the orientation of quantum paired rotors.Comment: 7 pages, 5 figures, to appear in Phys. Rev.

    Using Superconducting Qubit Circuits to Engineer Exotic Lattice Systems

    Full text link
    We propose an architecture based on superconducting qubits and resonators for the implementation of a variety of exotic lattice systems, such as spin and Hubbard models in higher or fractal dimensions and higher-genus topologies. Spin systems are realized naturally using qubits, while superconducting resonators can be used for the realization of Bose-Hubbard models. Fundamental requirements for these designs, such as controllable interactions between arbitrary qubit pairs, have recently been implemented in the laboratory, rendering our proposals feasible with current technology.Comment: 7 pages (two-column), 3 figure

    The aa-theorem and the Asymptotics of 4D Quantum Field Theory

    Full text link
    We study the possible IR and UV asymptotics of 4D Lorentz invariant unitary quantum field theory. Our main tool is a generalization of the Komargodski-Schwimmer proof for the aa-theorem. We use this to rule out a large class of renormalization group flows that do not asymptote to conformal field theories in the UV and IR. We show that if the IR (UV) asymptotics is described by perturbation theory, all beta functions must vanish faster than (1/lnμ)1/2(1/|\ln\mu|)^{1/2} as μ0\mu \to 0 (μ\mu \to \infty). This implies that the only possible asymptotics within perturbation theory is conformal field theory. In particular, it rules out perturbative theories with scale but not conformal invariance, which are equivalent to theories with renormalization group pseudocycles. Our arguments hold even for theories with gravitational anomalies. We also give a non-perturbative argument that excludes theories with scale but not conformal invariance. This argument holds for theories in which the stress-energy tensor is sufficiently nontrivial in a technical sense that we make precise.Comment: 41 pages, 2 figures. v2: Arguments clarified, some side comments corrected, connection to previous work by Jack and Osborn described, conclusions unaffecte
    corecore