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Dressing the electromagnetic nucleon current
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A field-theory-based approach to pion photoproduction off the nucleon is used to derive a microscopically
consistent formulation of the fully dressed electromagnetic nucleon current in an effective Lagrangian formalism.
It is shown how the rigorous implementation of local gauge invariance at all levels of the reaction dynamics
provides equations that lend themselves to practically manageable truncations of the underlying nonlinearities
of the problem. The requirement of consistency also suggests a novel way of treating the pion photoproduction
problem. Guided by a phenomenological implementation of gauge invariance for the truncated equations that
has proved successful for pion photoproduction, an expression for the fully dressed nucleon current is given
that satisfies the Ward-Takahashi identity for a fully dressed nucleon propagator as a matter of course. Possible
applications include meson photo- and electroproduction processes, bremsstrahlung, Compton scattering, and
ee′ processes off nucleons.
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I. INTRODUCTION

The electromagnetic interaction provides the cleanest probe
of hadronic systems available to experimentalists. Many
experimental facilities, such as JLab, MAMI, ELSA, SPring-8,
GRAAL, and others around the world, therefore, use reactions
employing real or virtual photons to gain information about the
internal dynamics of hadronic systems. (For a recent review,
see Ref. [1].) However, while we understand the electromag-
netic interaction perfectly well at the elementary level, its
applications in actual experiments do not concern elementary
particles but rather composite systems of elementary particles
that describe the internal structures of the baryonic or mesonic
systems that take part in the experiments. At intermediate
energies, for baryons in particular, there usually is no need to
invoke quark degrees of freedom to understand their internal
structures, since the internal dynamics of baryons can be
described very well in terms of baryonic and mesonic degrees
of freedom.

One very successful, quite fundamental way of dealing
with these degrees of freedom is the effective-field-theory
framework of chiral perturbation theory [2]. However, in view
of its perturbative nature, this cannot be easily extended to
energy regions too far away from threshold. At higher energies,
one usually must rely on effective Lagrangian formulations
that offer a more direct avenue to the actual meson and
baryon degrees of freedom that manifest themselves in the
experiments.

It is important, therefore, to understand the nature of the
electromagnetic interaction with mesons and baryons in a more
detailed picture. One of the most important and most basic
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systems in this respect is the nucleon itself. The matrix element
of the electromagnetic current operator Jµ of the nucleon
between on-shell nucleon spinors is given by

ūJ µu = ū(p′)
[
eδN γ µF1(k2) + e

iσµνkν

2m
κNF2(k2)

]
u(p),

(1)

where e is the fundamental charge unit, δN is 1 or 0 for
proton or neutron, respectively, and κN is the nucleon’s
anomalous magnetic moment; m is the physical nucleon mass
(which here is related to the incoming and outgoing nucleon
four-momenta by p2 = p′2 = m2). The (scalar) Dirac and
Pauli form factors, F1 and F2, respectively, are functions of
the squared photon four-momentum k = p′ − p, normalized
here such that F1(0) = F2(0) = 1. The expression appearing
within the square brackets, with two independent coefficient
functions, F1 and F2, is the most general expression for
the current Jµ for on-shell nucleons. A large number of
works exist that investigate the possible physical mechanisms
that lead to the observed functional behavior of the on-shell
form factors F1(k2) and F2(k2) either in terms of mesonic or
quark degrees of freedom, or as hybrid approaches that link
both particle regimes (see, e.g., Refs. [3–8] and references
therein).

The current in the form (1) appears only in physical
processes involving virtual photons, such as electron scattering
off the nucleon. While it is well known [9] that any physical
mechanism involving off-shell nucleons, in general, requires
an expansion of the current operator in terms of six independent
form factors, the simple expression inside the square brackets
of Eq. (1) nevertheless remains the parametrization of choice
for the nucleon current operator Jµ in many if not most
descriptions of photoprocesses within effective Lagrangian
approaches, irrespective of whether the photon is real or the
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incoming and outgoing nucleons are on-shell.1 A priori, of
course, it is not clear how much of the dynamics of the full
electromagnetic coupling to the nucleon is ignored by such a
simplified approach.

Based on the Lorentz structure of the spin-1/2 case
alone, the generic structure of the electromagnetic nucleon
current requires 12 independent form factors [9]. Using gauge
invariance reduces this to eight, and time-reversal invariance
further reduces this to six independent functions, as alluded
to above. In general, the (scalar) off-shell form factors are
functions of the squared incoming and outgoing nucleon
four-momenta, p2 and p′2, respectively, and of the squared
photon four-momentum k2. However, only the two on-shell
form factors F1(k2) and F2(k2) that appear in Eq. (1) are
accessible experimentally. This mismatch between what is
required for a complete Lorentz-covariant description of the
current and what can be checked experimentally presents
a formidable challenge for theoretical formulations of the
dynamical features of the nucleon current. This problem is
bypassed completely in non-Lorentz-covariant formulations
such as chiral perturbation theory [2] that only require on-shell
currents of the form (1) as a matter of course. However, in the
resonance region, farther away from threshold, where chiral
perturbation theory faces increasing difficulties in describing
the mesonic and baryonic degrees of freedom of reaction
processes, one must resort to effective Lagrangian approaches
that require the description of the off-shell properties of the
nucleon current. Most of the corresponding investigations are
restricted to the off-shell p′2 and p2 behavior of the form
factors F1 and F2 of Eq. (1) [10–12]. The full off-shell
behavior in terms of all six form factors of the nucleon current,
albeit in an ad hoc phenomenological manner, is considered
by Surya and Gross [13] in their model description of pion
photoproduction. A useful, but generic description of the
constraints on the structure of hadron currents in general and of
the nucleon current in particular is given in Ref. [14]; however,
no practical scheme is offered for the calculation of the full
nucleon current.

It is the purpose of the present work to provide a more
detailed description of the electromagnetic nucleon current
Jµ. We will start from a comprehensive field theory [15]
that utilizes baryon and meson degrees of freedom to de-
scribe pion-nucleon scattering and that also provides—via
its description of the dressed nucleon propagator—an avenue
to the detailed dynamics of the nucleon’s electromagnetic
interaction. The electromagnetic currents of this approach are

1One should mention in this context that if one uses this simplified
expression with two degrees of freedom for virtual photons, at the
very least one should replace the Dirac part according to

γ µF1(k2) → γ µ + (γ µk2 − kµk/)
F1(k2) − 1

k2
,

because, on general grounds, the k2 dependence for virtual photons
can only occur in manifestly transverse contributions. On-shell, this
reduces to the Dirac term of Eq. (1), of course. In this respect, see
also the general discussion on the structure of the nucleon current in
Ref. [14].

derived employing the gauge-derivative method of Haberzettl
[15] that provides a general tool for coupling the photon
to hadronic systems. (This procedure is also referred to as
“gauging of equations” by others [16].) The full formalism
is a very complex and nonlinear Dyson-Schwinger-type
approach and, as such, therefore, not easily implemented in
practical applications. We will show here how this formalism
can be reformulated equivalently in a manner that makes
it directly amenable to physically motivated approximation
schemes, thus rendering the approach practically manageable.
Of decisive importance in this respect will be the fact that
the internal dressing effects of the nucleon current and the
dynamics of pion photoproduction are very closely related.

The paper is organized as follows. In Sec. II, concentrating
on contributions due to pions, nucleons, and photons only,
we introduce some basic facts needed for the description of
the dressed nucleon current Jµ. In doing so, we follow the
corresponding field-theory formulation of Haberzettl [15]. In
particular, we discuss the structure of the unique minimal
Ball-Chiu current [17] that provides the current’s Ward-
Takahashi identity [18,19]. It is argued that the internal
structure of Jµ is very closely related to pion photoproduction
and we therefore revisit this problem in Sec. III, where we
extend the approach of Haberzettl, Nakayama, and Krewald
[20] to make the truncated formalism gauge invariant in a
manner that is microscopically consistent with the dressing
mechanisms of the nucleon current, which are provided in
the subsequent Sec. IV. Up to this stage, the derivations of
both dressed nucleon current and pion photoproduction current
provide exact expressions. In Sec. V, we then discuss possible
approximations to render the complex nonlinearity of the
resulting equations manageable in practice. Finally, Sec. VI
provides a summarizing assessment, including a discussion of
possible applications.

II. NUCLEON CURRENT: BASIC CONSIDERATIONS

The generic structure of the electromagnetic current Jµ of
the nucleon can be determined in a formulation that involves
only pions, nucleons, and photons. Any additional hadronic
degrees of freedom will only complicate the situation, but will
not add any qualitatively new structure to Jµ; in other words,
they will not add anything of substance to the discussion.2

Using these degrees of freedom, the field-theory approach of
Haberzettl [15] provides an expression for the current based
on a Lorentz-covariant effective Lagrangian formalism. Rather
than recapitulating all of the details of Ref. [15], we summarize
the result given there in several diagrams.

To define the dressed nucleon current Jµ, we need the
dressed nucleon propagator S which is obtained from the T

matrix for πN scattering. Figure 1 shows the structure of this
T matrix; Fig. 1(a), in particular, depicts the splitting of the

2Of course, in an actual application of the present formalism, the
internal “pion” and “nucleon” appearing here must be expanded
to incorporate all relevant meson and baryon degrees of freedom,
respectively.
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T

(a)

= + X

T

(b)

= V + V T X

(d)

= U + U X

V

(c)

= + U U

(e)

= + • • •

FIG. 1. Generic structure of the pion-nucleon T matrix employing pions and nucleons as the only hadronic degrees of freedom [15].
(a) Splitting of T into s-channel pole part and nonpole X. (b) Bethe-Salpeter integral equation for T , with (c) the driving term V according to
Eq. (6). (d) Bethe-Salpeter integral equation for nonpole X, with (e) nonpole driving term U . Dressed vertices are solid circles; undressed ones
open circles. Dressed (internal) nucleons are shown as thick lines; undressed ones as thin lines; pions as dashed lines. Note that the s-channel
pole term in the driving term V is bare [because it gets dressed by the equation (b) itself], whereas in the full theory, all mechanisms in the
nonpole U are fully dressed via Dyson-Schwinger-type mechanisms, as depicted in Fig. 2.

full amplitude T into its s-channel pole part and its nonpole
part X, i.e., [15]

T = |F 〉 S 〈F | + X, (2)

relevant for some of the present considerations.3 The first term
here contains the nucleon propagator S that provides the s-
channel pole. The F are the fully dressed πNN vertices related
to the bare vertex f by

|F 〉 = |f 〉 + XG0 |f 〉 , (3)

which is part of the nonlinear Dyson-Schwinger-type equa-
tions shown in Fig. 2. Both T and X are obtained as solutions
of Bethe-Salpeter-type integral equations according to

T = V + V G0T , (4)

and

X = U + UG0X, (5)

as depicted in Figs. 1(b) and 1(d), respectively. The respective
driving terms V and U differ by the bare s-channel diagram,
as shown in Figs. 1(c) and 1(e), i.e.,

V = |f 〉 S0 〈f | + U, (6)

where S0 stands for the bare nucleon propagator. G0 in
Eqs. (3)–(5) describes the intermediate propagation of free
pion and nucleon states that share the same total four-
momentum of the process.

3We follow here the notation of Ref. [15], i.e., we do not use the
usual notation of T P and T NP for the pole and nonpole contributions
of T , respectively, because the corresponding indices tend to clutter
up the equations. For the same reason, we use U instead of V NP for the
driving term of the nonpole Bethe-Salpeter equation (5). Furthermore,
as in Ref. [15], the bra and ket notation is used here simply as a quick
way to see whether a vertex F describes N → πN , which would be
|F 〉, or πN → N , which is written as 〈F |. This avoids the excessive
use of adjoint daggers (†) and makes the equations easier to read. The
bras and kets are not to be misconstrued as Hilbert-space vectors.

The fully dressed electromagnetic nucleon current Jµ

derived in Ref. [15] is shown in Fig. 3. Formally, it results from
applying the gauge-derivative procedure [15] to the dressed
nucleon propagator S; however, it can be understood very
simply as attaching a photon line to the propagator diagrams in
Fig. 2(a) in all possible ways. To further understand the details
of this structure, we mention that one of the simplest physical
manifestations of the nucleon current occurs in the pion
photoproduction process off the nucleon (shown in Fig. 4),
because here the nucleon current provides one of the factors
of the s-channel pole term (the other being the hadronic πNN

production vertex). It should not be surprising, therefore, that
much of the detailed internal structure of the current can be
understood by the same mechanisms that contribute to the
pion photoproduction amplitude Mµ. Substituting Fig. 4(b) for
parts of Fig. 3(a), Fig. 5 shows that all internal dynamics of the
nucleon current Jµ depicted in Fig. 3(a) may be represented
equivalently in terms of loops over one-nucleon irreducible
contributions to the pion photoproduction, with the exception
of one loop involving the Kroll-Ruderman current [15]. This
close relationship of the dressing mechanisms of the nucleon
current forms the basis of the results presented below.

A. Gauge invariance of the nucleon current

The dressed current Jµ must satisfy gauge invari-
ance; hence, it must obey the Ward-Takahashi identity

(a)= +

(b)= + X

FIG. 2. Dressing mechanisms for (a) the nucleon propagator S

and (b) the πNN vertex F according to Eq. (3) that appears in the
nucleon’s self-energy contribution � shown in (a) as a loop. The
notation is the same as in Fig. 1.
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= + +

+ + + U

(a)

U = + + +
(b)

FIG. 3. (a) Structure of the full electromagnetic nucleon current
J µ employing nucleons and pions as the only hadronic degrees of
freedom [15]. The open circle of the first term on the right-hand
side is the bare current J

µ

0 and open-circle four-point functions in
the next two diagrams depict the Kroll-Ruderman contact current.
The last diagram subsumes the intermediate contributions of the
interaction current Uµ arising from the photon interacting with the
internal mechanisms of the one-nucleon irreducible (i.e., nonpolar)
πN interaction U . (b) The interaction current Uµ; explicitly shown
are only the lowest-order contributions that follow from the photon
interacting with the u-channel Born term of πN scattering [cf.
Fig. 1(e)]. The γπNN four-point vertices of the last two diagrams
subsume the interaction of the photon with the interior of the fully
dressed πNN vertex (cf. last diagram in Fig. 6).

(WTI) [18,19],

kµJµ(p′, p) = S−1(p′)QN − QNS−1(p), (7)

where p and p′ are the incoming and outgoing nucleon
four-momenta, respectively, and k = p′ − p is the (incoming)
photon momentum; QN is the nucleon’s charge operator. This
off-shell constraint ensures a conserved current for nucleons
that are on-shell, i.e., when p′2 = p2 = m2.

Without lack of generality, we may write the nucleon
current as

Jµ(p′, p) = Jµ
s (p′, p) + T µ(p′, p), (8)

where J
µ
s is the minimal current that satisfies the WTI (7).

Minimal is used here in the sense that one cannot find a
current with simpler analytic structures that still satisfies the
nucleon WTI [17]. (However, there is a freedom regarding the
symmetry properties of this minimal current; see footnote 4.)

M = + b + X b

(a)

b = + + + U

(b)

FIG. 4. (a) Pion photoproduction current Mµ [15]. The diagrams
show the splitting of the production current Mµ into the s-channel
pole term and the remaining one-nucleon irreducible contributions,
with the final-state interaction mediated by the nonpole part X of the
pion-nucleon T matrix. (b) Structure of the Born-type contribution bµ,
as given in Eq. (23). The four diagrams on the right-hand side depict,
in the order given, the u- and t-channel contributions, the Kroll-
Ruderman contact term, and the loop involving the πN interaction
current Uµ of Fig. 3(b).

= + + b

FIG. 5. Alternative depiction of the nucleon current J µ of
Fig. 3(a) employing the Born-type pion-production contribution bµ

from Fig. 4(b).

In other words, the four-divergence of J
µ
s is given by

kµJµ
s (p′, p) = S−1(p′)QN − QNS−1(p), (9)

and T µ thus is the transverse remainder, with

kµT µ(p′, p) = 0. (10)

By construction, this transversality must be manifest globally
and it is not subject to any particular kinematic or dynamic
restrictions.

B. Minimal nucleon current

Let us write the dressed propagator for a nucleon with
four-momentum p in a generic manner as

S(p) = 1

p/A(p2) − m B(p2)
, (11)

where A(p2) and B(p2) are the two independent scalar
dressing functions constrained by the residue conditions

A(m2) = B(m2) (12a)

and

A(m2) + 2m2 d[A(p2) − B(p2)]

dp2

∣∣∣∣
p2=m2

= 1. (12b)

From the residue condition alone, one cannot in general
conclude that A(m2) = B(m2) = 1; in the structureless case,
however, we have A ≡ B ≡ 1. (Note, however, that even
though there are no explicit p2-dependent dressing functions in
the latter case, implicit dressing effects are present nevertheless
owing to the fact that the mass m is the physical mass.)

Following Ball and Chiu [17], the minimal nucleon current
that satisfies the WTI (9) is given by

Jµ
s (p′, p) = (p′ + p)µ

S−1(p′)QN − QNS−1(p)

p′2 − p2

+
[
γ µ − (p′ + p)µ

p′2 − p2
k/

]
QN

A(p′2) + A(p2)

2
.

(13)

The first term here on the right-hand side is sufficient to
produce the WTI, but the second part (which is transverse)
is necessary to fully cancel the 1/(p′2 − p2) singularity, as
can be seen explicitly by recasting J

µ
s in the equivalent form

Jµ
s (p′, p) = γ µQN

A(p′2) + A(p2)

2
+ (p′ + p)µQN

×
[
p/′ + p/

2

A(p′2) − A(p2)

p′2 − p2

−m
B(p′2) − B(p2)

p′2 − p2

]
. (14)
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In fact, J
µ
s is the unique current that satisfies the WTI and

also is nonsingular and symmetric4 in p′ and p. Moreover, as
can be seen from (14), for structureless nucleons, this reduces
to the usual γ µ Dirac current. And, invoking the generalized
Gordon identity

(p′ + p)µ = −iσµνkν + p/′γ µ + γ µp/, (15)

the on-shell matrix element of J
µ
s is easily found as

ūJ µ
s u = ū(p′)eδN

{
γ µ + i

σµνkν

2m
[A(m2) − 1]

}
u(p). (16)

Note that there is no k2 dependence here, i.e., this result does
not depend on whether the photon is real or virtual. This is
consistent with the fact that minimal currents that satisfy the
WTI as a rule cannot depend on the photon four-momentum,
since such a dependence always sits in transverse contributions
[14]. We point out in this context that the σµνkν contribution
here must not be confused with the usual Pauli current, i.e., its
coefficient is not directly related to the anomalous magnetic
moment of the nucleon (which should be obvious because the
entire current J

µ
s vanishes for the neutron).

1. Minimal current taken half on-shell

Of particular interest for many applications is to consider
the half-on-shell reduction of the current. We shall do so
here for an incoming on-shell nucleon interacting with a
photon followed by the subsequent propagation of an off-shell
nucleon, but the following considerations can be readily
translated into describing the reversed situation where the
outgoing nucleon is on-shell. Thus, half-on-shell, with an
incoming nucleon spinor u(p) on the right and an outgoing
propagator S(p + k) on the left, using Eq. (15), this results in

SJµ
s u ≡ S(p + k)Jµ

s (p + k, p)u(p)

=
(

1

p/ + k/ − m
j

µ

1 + 2m

s − m2
j

µ

2

)
QN u(p), (17)

where s = (p + k)2 and p2 = m2. The (dimensionless) auxil-
iary currents are given by

j
µ

1 = γ µ (1 − κ1) + iσµνkν

2m
κ1 (18a)

and

j
µ

2 = (2p + k)µ

2m
κ1 + iσµνkν

2m
κ2, (18b)

4It is not necessary to make J µ
s symmetric; to render it nonsingular,

it suffices to write the last factor in Eq. (13) as

A(p′2) + A(p2)

2
→ ηA(p′2) + (1 − η)A(p2)

instead, where η is an arbitrary parameter. However, since there is
nothing that distinguishes the dynamics of the incoming nucleon from
that of the outgoing nucleon, it seems natural to choose η = 1/2 which
then indeed does make the nonsingular form (13) unique.

with (dimensionless) independent coefficient functions

κ1 = m2 [B(s) − A(s)][A(s) + A(m2)]

sA2(s) − m2B2(s)
(19a)

and

κ2 = A(m2) − A(s)

2A(s)
+ A(s) + B(s)

2A(s)
κ1. (19b)

The on-shell values at s = m2 of both coefficients are identical,
i.e.,

κ1(m2) = κ2(m2) = A(m2) − 1. (20)

This means they both vanish in the structureless limit, thus
leaving in Eq. (17) only the usual γ µ Dirac current together
with a structureless propagator. All effects of the dressing thus
reside in the terms that depend on the κi (i = 1, 2) whose
overall contributions are easily seen to be transverse.

We emphasize that Eq. (17) is exact and that it includes
all possible dressing mechanisms. Its four-divergence, in
particular, is given by

kµ S(p + k)Jµ
s (p + k, p) u(p) = QN u(p), (21)

and the resulting expression does not involve any dressing
effects whatsoever. Any approximation, therefore, that only
involves the coefficient functions κi will have no bearing on the
gauge-invariance contribution of any term containing Eq. (17).
This is of direct and immediate relevance to the treatment of
pion photoproduction presented in the following.

III. PION PHOTOPRODUCTION REVISITED

To see how the gauge-invariant minimal current contribu-
tion J

µ
s of Eq. (13) can be utilized for a practically useful

description of the full nucleon current Jµ, we need to revisit
the photoproduction of the pion because, as alluded to above,
the internal dynamics of the current is closely related to
mechanisms found in this production process, as seen in Fig. 5.

Following Ref. [15], we start by writing the production
current as

Mµ = FsSJµ + bµ + XG0b
µ, (22)

which is a self-evident transcription of Fig. 4(a). The first
term on the right-hand side provides the s-channel current
M

µ
s = FsSJµ which contains the nucleon pole; Fs describes

the πNN vertex with s-channel kinematics.5 In the last term, X
provides the πN final-state interaction (FSI) of the production
current. The current bµ subsuming the Born-type mechanisms
is given by

bµ = Mµ
u + M

µ
t + m

µ

KR + UµG0 |F 〉 . (23)

5Within the context of Eq. (22), using the notation discussed in
footnote 3, we could write the s-channel vertex Fs equivalently as
|F 〉, i.e., the same way as in Eq. (2). We choose not to do that here
to maintain consistency with the notation of the generalized WTI in
Eq. (25) where the explicit Mandelstam indices x = s, u, t provide
a better description of the kinematic context of the respective πNN

vertices Fx .
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p

k

p′

q

s +
p

k

p′

q

u +
p

k

p′

q

t
+

p

k

p′

q

FIG. 6. Generic pion photoproduction diagrams γ + N → π +
N , with the s-, u-, and t-channel pole diagrams Mµ

s , Mµ
u , and

M
µ
t , respectively, and the contact-type interaction current M

µ
int that

subsumes all final-state interaction [cf. Eq. (24)]. The labels (s, u, t) at
the πNN vertices allude to the usual Mandelstam variables s, u, and
t that describe the respective kinematic situations. The four-momenta
here are the ones used in Eq. (51).

This four-point current (which is also an essential ingredient
of the nucleon current, as shown in the last diagram of Fig. 5)
describes the four terms appearing on the right-hand side of
Fig. 4(b), which are, respectively, the u- and t-channel currents,
the Kroll-Ruderman current [21], and the loop integration
involving the πN interaction current Uµ of Fig. 3(b). Gener-
ically, the overall structure of Mµ is presented in Fig. 6 [22],
with the first three diagrams containing the respective s-,
u-, and t-channel pole contributions, and everything else—
including the FSI contributions—being subsumed in

M
µ
int = m

µ

KR + UµG0 |F 〉 + XG0b
µ, (24)

which is the contact-type nonpolar four-point interaction
current depicted in the last diagram of Fig. 6.

A. Gauge invariance of the photoproduction current

The full production current Mµ must obey gauge invari-
ance formulated in terms of the generalized Ward-Takahashi
identity [15,23],

kµMµ = −FsS(p + k)QiS
−1(p)

+ S−1(p′)Qf S(p′ − k)Fu

+ 	−1
π (q)Qπ	π (q − k)Ft , (25)

where the four-momenta are those shown in Fig. 6. The vertices
Fx here correspond to the (fully dressed) πNN vertices F

in the respective kinematic situations corresponding to the
Mandelstam variables x = s, u, t , as shown in Fig. 6. The
propagators for the nucleon and pion are denoted by S and
	π , respectively, and the charge operators for the initial and
final nucleon and for the outgoing pion are Qi , Qf , and Qπ ,
respectively. Obviously, this expression vanishes for on-shell
hadrons and thus provides a conserved current. This off-shell
formulation of gauge invariance, however, goes beyond that
by providing a local constraint on the gauge invariance of the
photoproduction current that is similar to requiring the usual
Ward-Takahashi identity for the single-particle currents [18],
which for the nucleon is given in Eq. (7). Both requirements
(25) and (7) (and its analog for the pion) are essential
for the internal consistency of microscopic formulations of
photoprocesses.

For the practical implementation of gauge invariance to be
discussed below, however, it is easier to use the equivalent
constraint for the four-divergence of the interaction current

M
µ
int, viz. [15,20],

kµM
µ
int = −F̃sei + F̃uef + F̃t eπ , (26)

which follows immediately from the generic structure shown in
Fig. 6 assuming the validity of the generalized Ward-Takahashi
identity (25) for the current Mµ. Here, the F̃x are the vertices
Fx of Eq. (25) stripped of their isospin operators τ that now
appear in ei = τQi , ef = Qf τ , and eπ = Qπτ , which are
the charges for all external hadron legs in an appropriate
isospin basis (with all corresponding indices and summations
suppressed). The relation ei = ef + eπ , therefore, describes
charge conservation for the pion photoproduction process.
We emphasize that the gauge-invariance condition (26) is an
off-shell constraint that must always be true, i.e., it is not
restricted to special kinematic or dynamic situations. With
the single-particle WTIs given, Eqs. (25) and (26) provide
completely equivalent formulations of gauge invariance for
the pion production process.

B. Reformulating the FSI contribution

To utilize Eq. (26) in the following, we first need to rewrite
the current Mµ of Eq. (22) to isolate the interaction current
M

µ
int in a practically useful manner. To this end, we split the

Born current bµ into its longitudinal and transverse parts,

bµ = b
µ

L + b
µ

T , (27)

as indicated by the respective indices L and T, and write the
FSI term of Eq. (22) equivalently as

XG0b
µ = XG0b

µ

L + XG0
[(

Mµ
u + M

µ
t

)
T + T

µ

X

]
+ XG0

[(
m

µ

KR + UµG0 |F 〉 )
T − T

µ

X

]
. (28)

We have introduced here an as yet undetermined transverse
current T

µ

X that cancels out in the last two terms; its choice,
therefore, is of no consequence for the full formalism. Inserting
this into Eq. (22), we may write

Mµ = FsSJµ + Mµ
u + M

µ
t + Mµ

c

+ XG0
[(

Mµ
u + M

µ
t

)
T + T

µ

X

]
, (29)

where

Mµ
c = (1 + XG0)

(
m

µ

KR + UµG0 |F 〉 )
+ XG0

(
Mµ

u + M
µ
t

)
L − XG0T

µ

X . (30)

We shall now exploit the freedom of choosing the undeter-
mined transverse current and put

T
µ

X = (
Mµ

c

)
T, (31)

which results in

Mµ = FsSJµ + Bµ + XG0B
µ

T (32)

for the photoproduction amplitude, where

Bµ = Mµ
u + M

µ
t + Mµ

c . (33)

These equations are depicted in Fig. 7. Owing to the choice
(31), Eq. (32) is very close in structure to Eq. (22) with,
however, an explicit FSI loop contribution that contains only
the transverse restriction B

µ

T of Bµ. This particular loop

065502-6



DRESSING THE ELECTROMAGNETIC NUCLEON CURRENT PHYSICAL REVIEW C 83, 065502 (2011)

(a)

M = + B + X BT

(b)

M = + B + T BT

(c)

B = + +

FIG. 7. Representations of the photoproduction current Mµ

(equivalent to those of Fig. 4), with (a) loop integration over the
nonpole amplitude X [see Eq. (32)] and (b) loop integration over the
full πN T matrix [see Eq. (47)]. The details of the four-point box B are
shown in (c), with the last diagram subsuming the contact-type current
mechanisms Mµ

c shown in Fig. 8. BT denotes the restriction of B to
transverse contributions. The different nucleon-current contributions
appearing in the s-channel terms of (a) and (b) are given in Fig. 9.

integration, therefore, does not contribute when evaluating the
four-divergence of Mµ using Eq. (32).

With the choice (31), we may then recast Eq. (30) in the
implicit form

Mµ
c = m

µ

KR + UµG0 |F 〉 + UG0
(
Mµ

u + M
µ
t + Mµ

c

)
L, (34)

which is shown in Fig. 8. The longitudinal part of this
equation constitutes an integral equation for (Mµ

c )L, and for
the transverse part we have(

Mµ
c

)
T = (

m
µ

KR + UµG0 |F 〉 )
T, (35)

which is given by the transverse projections of the first two
diagrams on the right-hand side of Fig. 8.

The interaction current of Eq. (24) can now be written as

M
µ
int = Mµ

c + XG0
(
Mµ

u + M
µ
t + Mµ

c

)
T, (36)

where the explicit loop-integration over the nonpolar FSI
amplitude X is transverse. Its four-divergence vanishes and
thus we have

kµM
µ
int = kµMµ

c . (37)

It is this equality, in particular, that is of central importance
for practical purposes since it will allow us to exploit the
gauge-invariance condition (26) fully in terms of the properties
of the contact-type current M

µ
c . Any approximation of this

= + U

+ U L + U L + U L

FIG. 8. Diagrammatic representation of Eq. (34), with the solid
square four-point vertex depicting the contact-type current Mµ

c . The
indices L in the loops of the last three diagrams signify that only the
longitudinal parts of the respective photon couplings are to be taken
into account. These three diagrams, therefore, do not contribute for
real photons.

current, therefore, can be understood as an approximation of
the mechanisms subsumed in Fig. 8.

Of particular importance in this respect is the fact that
for real photons, only the transverse parts of the currents
contribute to physical observables. Therefore, as an immediate
consequence of the choice (31), effectively any approximation
of M

µ
c is a direct approximation of UµG0 |F 〉 because of

Eq. (35). Note also that the structural closeness between
Eqs. (22) and (32) becomes even closer for real photons since
the differences between bµ, Bµ, and B

µ

T are irrelevant in this
case. This is easily seen explicitly by equating the right-hand
sides of Eqs. (22) and (32), which produces

bµ = Bµ − UG0B
µ

L

= B
µ

T + (1 − UG0)Bµ

L (38)

when using Eq. (5) and the splitting Bµ = B
µ

T + B
µ

L , i.e., for
transverse real photons effectively both bµ in Eq. (22) and Bµ

in Eq. (32) are represented by B
µ

T .

IV. DRESSING THE NUCLEON CURRENT

Let us now turn back to the question of how to describe
the dressing of the nucleon current. According to Fig. 5, the
dressed current may be written as [15]

Jµ = J
µ

b + 〈F | G0b
µ, (39)

where bµ subsumes the mechanism given in Eq. (23), and the
modified bare current Jµ

b corresponds to the first two diagrams
on the right-hand side of Fig. 3,

J
µ

b = J
µ

0 + 〈
m

µ

KR

∣∣G0|F 〉 . (40)

Here, J
µ

0 is the (true) bare current and the second term is
the loop containing the Kroll-Ruderman current m

µ

KR with,
however, the pion coming into the contact vertex instead of
going out.

To rewrite Eq. (39) employing the results of Sec. III B, we
replace bµ using Eq. (38) to find

Jµ = J
µ

b + 〈f | G0B
µ

L + 〈F | G0B
µ

T , (41)

where the relationship (3) between dressed and undressed
vertices, F and f , respectively, was used. We emphasize in
this respect that the clear separation found here of bare vertex
f and longitudinal current B

µ

L on the one hand, and dressed
vertex F and transverse current Bµ

T on the other hand is a direct
consequence of the choice (31) for T

µ

X , i.e., the choice (31) is
unique in this regard. Let us write the nucleon current as

Jµ = J̃ µ
s + 〈F | G0

(
Mµ

u + M
µ
t + Mµ

c

)
T, (42)

where

J̃ µ
s = J

µ

b + 〈f | G0
(
Mµ

u + M
µ
t + Mµ

c

)
L. (43)

For the sake of clarity, we have expanded here B
µ

T and B
µ

L using
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= + T + T + T
(a)

= + + L + L + L
(b)

FIG. 9. (a) Dressed nucleon current J µ according to Eq. (42). The first term on the right-hand side (with a solid square vertex) depicts
J̃ µ

s which subsumes the mechanisms shown in part (b). Diagrams labeled T or L correspond to the transverse and longitudinal contributions
given in Eqs. (42) and (43), respectively. The solid-square four-point vertices in the last diagrams of each line depict Mµ

c given in Fig. 8. The
phenomenological approximations discussed in Sec. V affect the (square-shaped) three- and four-point vertices of J̃ µ

s and Mµ
c , respectively.

the explicit form (33). Equations (42) and (43) are depicted in
Fig. 9.

It is obvious, of course, that since Jµ and J̃
µ
s differ only

by transverse pieces, their four-divergences coincide. In other
words, they both satisfy the full nucleon WTI (7). We may,
therefore, without lack of generality employ the minimal Ball-
Chiu current J

µ
s of Eq. (13) and write

J̃ µ
s = Jµ

s + T̃ µ
s , (44)

where T̃
µ
s is the transverse remainder defined by this relation,

i.e.,

T̃ µ
s = (

J̃ µ
s − Jµ

s

)
T = (

J
µ

b − Jµ
s

)
T. (45)

The (exact) nucleon current then reads

Jµ = Jµ
s + T̃ µ

s + 〈F | G0
(
Mµ

u + M
µ
t + Mµ

c

)
T, (46)

where the details of any given dressing scheme implied by
the underlying hadronic Lagrangians determine the elements
on the right-hand side. Dynamically the most complex con-
tributions here, and therefore the most challenging ones in
numerical applications, are those that arise from the contact-
type current M

µ
c contained implicitly in T̃

µ
s and explicitly in

the last term of Eq. (46). In the following section, we discuss
approximations of T̃

µ
s and M

µ
c that will help render this result

useful in practical applications.

V. APPLICATION TO PION PHOTOPRODUCTION

Inserting the (exact) nucleon current (42) into the s-channel
term of the photoproduction current (32) and using the
splitting (2) of T into its pole and nonpole contributions, we
immediately find

Mµ = FsSJ̃ µ
s + Mµ

u + M
µ
t + Mµ

c

+ T G0
(
Mµ

u + M
µ
t + Mµ

c

)
T, (47)

which expresses the final-state interaction in terms of the full
πN T matrix instead of just its nonpolar part X. This equation
is depicted in Fig. 7(b).

By construction, this reformulation of the photoproduction
current Mµ is completely equivalent formally to both Eqs. (22)
and (32). From a practical point of view, however, formulating
the final-state interaction in terms of the full T matrix, as in
Eq. (47), possesses some advantages over doing so in terms
of the nonpolar X. We note, in particular, that in numerical

applications, one must truncate the tower of (nonlinear) Dyson-
Schwinger-type equations summarized in Figs. 1–5 because
their exact self-consistent solution would require enormous
computational resources that, in general, are not available.
As a consequence, the splitting of T into its pole part and the
nonpolar X will depend on the adopted approximation scheme,
thus making it non-unique. Its individual pieces, therefore,
may exhibit undesirable numerical artifacts [24] that are absent
from the full T matrix in Eq. (47) since T is much closer to
the actual observables.

A. Approximating J̃µ
s

Another advantage of the formulation (47) results from the
fact that its physical matrix elements only require the half-
on-shell expression of SJ̃

µ
s . The very fact that J̃

µ
s already

provides the full WTI (7), yet its only transverse contribution
stems from the modified bare term J

µ

b , suggests that J̃ µ
s is very

close to being minimal in the sense of the Ball-Chiu current
J

µ
s , Eq. (13), whose properties were discussed in Sec. II B.

Therefore, if one neglects the transverse remainder T̃
µ
s from

Eq. (44), i.e.,

T̃ µ
s → T̃ µ

s = 0, (48)

we have SJ̃
µ
s → SJ

µ
s for which one may then employ the

result (17) for the corresponding half-on-shell elements. In
actual calculations, one can then use the two coefficient
functions κ1 and κ2 appearing in the auxiliary currents of
Eqs. (18) as fit parameters, which is an excellent approximation
of the dressing effects inherent in the product SJ

µ
s when taken

half on-shell. This assertion is corroborated by the preliminary
numerical results for pion photoproduction of Ref. [24].

B. Approximating Mµ
c

The approximation (48) does not change the gauge-
invariance properties of the corresponding expressions for
both the nucleon current itself and for the production current
Mµ because changes of transverse contributions do not alter
the WTI (7) for the nucleon current Jµ or the generalized
WTI (25) for the production current Mµ. More general
truncations of the full Dyson-Schwinger structure, however,
will very likely result in the violation of gauge invariance
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of Mµ, and one then needs to introduce gauge-invariance
preserving (GIP) procedures to restore it.

The basic mechanism for this restoration was first given
by Drell and Lee [25] in a tree-level approximation of the
entire interaction current M

µ
int that satisfies the constraint (26).

The Drell-Lee current was later rediscovered by Ohta [26]
using analytic expansions of the vertex functions subjected
to minimal substitution. The dynamically more sophisticated
prescription put forward by Haberzettl, Nakayama, and
Krewald [20] generalizes the basic procedure of Ref. [27]
(which in turn generalizes the Drell-Lee mechanism [25])
to allow the inclusion of the full FSI contribution ap-
pearing in Eq. (22) in terms of X. This procedure based
on the generalized Ward-Takahashi identity (25) for the
production current [15,23] is not unique, of course, since
the generalized WTI does not constrain transverse current
contributions.

We will exploit this ambiguity here and provide an alter-
native gauge-invariant approximation of the amplitude Mµ

that is based on Eq. (47). It is one of the big advantages of the
present formulation that as long as the electromagnetic nucleon
and pion currents satisfy their individual WTIs, any violation
of the gauge invariance of Mµ resulting from truncations
necessitated by practicality can always be expressed in terms
of approximations of the contact-type current Mµ

c . The present
procedure is distinguished from the formulation given in
Ref. [20] by the choice (31) for T

µ

X which results in M
µ
c

appearing in both the photoproduction current Mµ and the
mechanisms of the nucleon current Jµ in Eq. (42). In other
words, any approximation of M

µ
c will consistently affect

the photoproduction and the nucleon currents in much the
same way as they are consistently linked in the exact Dyson-
Schwinger formalism.

As shown in the description leading up to Eq. (37), any
approximation of M

µ
c chosen to satisfy the interaction-current

condition (26) will preserve gauge invariance as a matter of
course. Restricting the present discussion to real photons for
simplicity, it follows from Eq. (35) that approximations of M

µ
c

can be understood basically as approximations of the loop in-
tegral over the five-point contact-type mechanisms subsumed
in Uµ, given by the second diagram on the right-hand side of
Fig. 8. The various mechanisms entering the πN interaction
current Uµ are discussed in some detail in Ref. [15]. Following
the procedures described in Ref. [20], there are various levels of
sophistication at which the constraint (26) can be implemented,
depending on how much of the detailed dynamics of Uµ can be
incorporated in a particular application. It is shown in Ref. [20]
how any one of these interaction-current mechanisms can be
approximated in a gauge-invariant manner by utilizing the
structure of their underlying independent hadronic four-point
interactions. For the case of the lowest-order contributions to
Uµ depicted explicitly in Fig. 3(b), for example, this entails
constructing a gauge-invariant approximation that uses the
underlying u-channel exchange interaction shown in Fig. 1(e).
In general, the procedures described in Ref. [20] permit one to
find a GIP approximation for any (n + 1)-point current arising
from attaching the photon to an n-point hadronic mechanism.
This is made possible by the consistent microscopic imple-
mentation of local gauge invariance in terms of generalized

Ward-Takahashi identities at all levels of the underlying
reaction dynamics.

For the present purpose, it is not necessary to duplicate
the discussion of Ref. [20]. We, therefore, restrict the present
application of the procedure to the simplest possible case in
which the entire contact-type current M

µ
c is approximated

without any regard for the details of its internal mechanisms.
While more sophisticated approximations could easily be con-
structed following Ref. [20] (and might even be warranted for
some applications), they would not add anything structurally
new to the present discussion.

At the simplest possible level, the dressed πNN vertices
are described by phenomenological form factors which we
write as

F̃x = Gλf̃x, (49)

where the scalar function f̃x provides the phenomenological
functional form of the vertex (normalized to unity when all
hadron legs are on-shell) and Gλ its coupling structure. As in
Eq. (26), the tilde indicates that the vertex has been stripped
of its isospin dependence (i.e., we have, for example, FsQi =
F̃sei = Gλf̃sei), and x = s, u, t indicates the kinematic con-
text in which the vertex appears. The coupling operator is
written as

Gλ = g γ5

(
λ + 1 − λ

2m
q/

)
, (50)

where g is the coupling strength, q is the outgoing pion four-
momentum, and λ dials between pseudovector (λ = 0) and
pseudoscalar (λ = 1) coupling.6 Following Refs. [20,27], we
may then approximate all of M

µ
c by the phenomenological GIP

current

Mµ
c → Mµ

c

= −(1 − λ)g
γ5γ

µ

2m
f̃teπ − Gλ

[
ei

(2p + k)µ

s − p2
(f̃s − F̂ )

+ ef

(2p′ − k)µ

u − p′2 (f̃u − F̂ )

+ eπ

(2q − k)µ

t − q2
(f̃t − F̂ )

]

+ geγ5
iσµνkν

4m2
κ̃N , (51)

where the momenta shown in Fig. 6 are being used. The first
term here provides a dressed version of the Kroll-Ruderman

6Note in this context that phenomenological form factors are
intended to mock up the fully dressed vertex. Hence, even if one
starts out with a fully chiral-symmetric pseudovector bare vertex, the
dressed vertex, in general, would no longer be pure pseudovector.
The ansatz (50) accounts for this fact in a phenomenological manner.
Phenomenologically, of course, λ could also be chosen as an s-, u-,
or t-dependent function, depending on the dynamical context of the
vertex.
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current7 and the other three terms supply the gauge-invariance-
preserving corrections for the s-, u-, and t-channel contribu-
tions. The subtraction function F̂ must be chosen such that any
one of the three terms in the square brackets remains finite if the
corresponding denominators go to zero. For specific choices of
how to achieve this, see Ref. [20]. The simplest possible such
choice is F̂ = 1 which corresponds to the original Drell-Lee
current [25,26]. In any case, this phenomenological expression
is then nonsingular and, moreover, it clearly satisfies the
gauge-invariance condition (26) because the F̂ -dependent
terms do not contribute to the four-divergence because of
charge conservation in the form ei − ef − eπ = 0.

The additional (transverse) last term in Eq. (51) is not
needed to preserve the gauge invariance of the photoproduction
current Mµ (and correspondingly it is absent from the consid-
erations of Ref. [20]). It is needed here, however, to provide
consistency with the nucleon current Jµ of Eq. (46) which also
features M

µ
c as one of its dynamical ingredients. The coeffi-

cient κ̃N of this additional transverse σµνkν current needs to be
fixed such that the on-shell matrix elements of the current (46)
reproduce Eq. (1), in particular, when we use the approxima-
tion (48). The factors in this term ensure that κ̃N is dimension-
less. In practice, as is the case for the present application to pion
photoproduction, the actual on-shell matrix elements of the
nucleon current usually never enter the calculations, and one
may then use κ̃N as an additional fit parameter that accounts
for the current being partially off-shell. Altogether then, for
given phenomenological vertices F̃x and subtraction function
F̂ , the dressing structure of the nucleon current is parametrized
by three parameters, κ̃N in Eq. (51), and κ1 and κ2 contained
in the half-on-shell result (17) via the auxiliary currents (18).

VI. DISCUSSION AND SUMMARY

Based on the field-theory approach of Haberzettl [15], we
have presented here a formulation of the dressed electromag-
netic current of the nucleon that is microscopically consistent
with the reaction mechanisms inherent in meson photoproduc-
tion. The goal was to equivalently rewrite the original expres-
sions of the full formalism in a manner that retains as much as
possible of its original dynamical structure while at the same
time presenting options for meaningful approximations which
in practice are necessary to render the equations manageable.
The consistency requirement, in particular, led to a novel
approximation scheme for pion photoproduction, different
from what was proposed in Ref. [20]. The resulting expressions
are summarized diagrammatically in Fig. 7 for pion photopro-
duction and in Fig. 9 for the dressed nucleon current.

The full theory presented up to and including Eq. (47) in
Sec. V is exact. The guiding principle for the construction of
the corresponding equations was the consistent and complete
implementation of local gauge invariance at all levels of the

7Note that (1 − λ)f̃t = 1 + [(1 − λ)f̃t − 1], i.e., the original bare
Kroll-Ruderman term m

µ

KR survives in this GIP current and the
phenomenological dressing comes in via the additional (1 − λ)f̃t − 1
contribution.

reaction mechanisms in a manner that lends itself to transparent
approximation schemes. In doing so we followed the basic
strategy of Ref. [20] with, however, one important and essential
difference. Instead of choosing the optional transverse current
T

µ

X as zero, as was done in Ref. [20], we now choose it so that
the resulting expression (42) for the dressed nucleon current
exhibits a clean separation of transverse and longitudinal
contributions that makes it straightforward to implement a
phenomenological description of the dressing effects which
preserves gauge invariance through the use of the minimal
Ball-Chiu current J

µ
s of Eq. (13).

The phenomenological use of J
µ
s for the nucleon current

makes the description of pion photoproduction particularly
simple when the FSI loop of the production current Mµ is
written in terms of the full πN T matrix (instead of with
its nonpole part X) because the s-channel term of the form
(17) resulting from the approximation (48) then admits a
very simple approximation by utilizing the effective dressing
functions κ1 and κ2 as two fit parameters.

Another obvious advantage of the present scheme is that
for real photons, in particular, the effective structure of the
resulting photoproduction current remains very close to the
full formalism even if the loops over the five-point-current
contributions Uµ are approximated with the phenomeno-
logical contact current of Eq. (51), since for real photons
the longitudinal contributions that make up the structural
difference between the currents Mµ of Fig. 4 and of Fig. 7
are irrelevant, as discussed in the context of Eq. (38).

The approximations discussed here in detail concern replac-
ing the current J̃

µ
s by the minimal Ball-Chiu current J

µ
s and

the contact current M
µ
c of Eq. (34) by the phenomenological

GIP expression (51). It should be clear, however, that this still
leaves a formidable self-consistency problem because, as can
be read off Fig. 9(a), the nucleon current Jµ also appears in
one of the loops on the right-hand side. In practice, therefore,
instead of solving this self-consistency problem iteratively, one
might truncate it at the lowest level by employing the usual
simplified on-shell expression (1) for the current in the loop.

The obvious first application of the present dressing formal-
ism for the nucleon current is pion photoproduction, of course,
since it was the consistency requirement with this process
that inspired the formalism in the first place. As mentioned,
this application is underway already [24], and the preliminary
results obtained so far are very encouraging. In other words,
the present approach is not just formally correct but the
approximations suggested by its formal structure indeed lead to
an excellent description of the data. Other possible applications
include any process that may benefit from a detailed micro-
scopic description of the nucleon current. Obvious candidates
are other meson production processes with both real and virtual
photons off the nucleon, Compton scattering off the nucleon,
and NN bremsstrahlung. For virtual photons, in particular, the
present formalism may also be helpful in extracting the func-
tional behavior of electromagnetic form factors from the data.
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