693 research outputs found
Constraining multiple systems with GAIA
GAIA will provide observations of some multiple asteroid and dwarf systems.
These observations are a way to determine and improve the quantification of
dynamical parameters, such as the masses and the gravity fields, in these
multiple systems. Here we investigate this problem in the cases of Pluto's and
Eugenia's system. We simulate observations reproducing an approximate planning
of the GAIA observations for both systems, as well as the New Horizons
observations of Pluto. We have developed a numerical model reproducing the
specific behavior of multiple asteroid system around the Sun and fit it to the
simulated observations using least-square method, giving the uncertainties on
the fitted parameters. We found that GAIA will improve significantly the
precision of Pluto's and Charon's mass, as well as Petit Prince's orbital
elements and Eugenia's polar oblateness.Comment: 5 pages, accepted by Planetary and Space Science, Gaia GREAT-SSO-Pis
L∞-norm and energy quantization for the planar Lane–Emden problem with large exponent
For any smooth bounded domain (Formula presented.), we consider positive solutions to (Formula presented.)which satisfy the uniform energy bound (Formula presented.)for (Formula presented.). We prove convergence to (Formula presented.) as (Formula presented.) of the (Formula presented.)-norm of any solution. We further deduce quantization of the energy to multiples of (Formula presented.), thus completing the analysis performed in De Marchis et al. (J Fixed Point Theory Appl 19:889–916, 2017)
Physical and dynamical properties of the main belt triple asteroid (87) Sylvia
We present the analysis of high angular resolution observations of the triple
Asteroid (87) Sylvia collected with three 8-10 m class telescopes (Keck, VLT,
Gemini North) and the Hubble Space Telescope. The moons' mutual orbits were
derived individually using a purely Keplerian model. We computed the position
of Romulus, the outer moon of the system, at the epoch of a recent stellar
occultation which was successfully observed at less than 15 km from our
predicted position, within the uncertainty of our model. The occultation data
revealed that the Moon, with a surface-area equivalent diameter
Ds=23.10.7km, is strongly elongated (axes ratio of
2.70.32.70.3), significantly more than single asteroids of similar
size in the main-belt. We concluded that its shape is probably affected by the
tides from the primary. A new shape model of the primary was calculated
combining adaptive-optics observations with this occultation and 40 archived
light-curves recorded since 1978. The difference between the
J2=0.024-0.009+0.016 derived from the 3-D shape model assuming an homogeneous
distribution of mass for the volume equivalent diameter Dv=27310km primary
and the null J2 implied by the Keplerian orbits suggests a non-homogeneous mass
distribution in the asteroid's interior
The Origin of (90) Antiope From Component-Resolved Near-Infrared Spectroscopy
The origin of the similary-sized binary asteroid (90) Antiope remains an
unsolved puzzle. To constrain the origin of this unique double system, we
recorded individual spectra of the components using SPIFFI, a near-infrared
integral field spectrograph fed by SINFONI, an adaptive optics module available
on VLT-UT4. Using our previously published orbital model, we requested
telescope time when the separation of the components of (90) Antiope was larger
than 0.087", to minimize the contamination between components, during the
February 2009 opposition. Several multi-spectral data-cubes in J band (SNR=40)
and H+K band (SNR=100) were recorded in three epochs and revealed the two
components of (90) Antiope. After developing a specific photometric extraction
method and running an error analysis by Monte-Carlo simulations, we
successfully extracted reliable spectra of both components from 1.1 to 2.4 um
taken on the night of February 21, 2009. These spectra do not display any
significant absorption features due to mafic mineral, ices, or organics, and
their slopes are in agreement with both components being C- or Cb- type
asteroids. Their constant flux ratio indicates that both components' surface
reflectances are quite similar, with a 1-sigma variation of 7%. By comparison
with 2MASS J, H, K color distribution of observed Themis family members, we
conclude that both bodies were most likely formed at the same time and from the
same material. The similarly-sized system could indeed be the result of the
breakup of a rubble-pile proto-Antiope into two equal-sized bodies, but other
scenarios of formation implying a common origin should also be considered.Comment: 46 pages, 1 table, 11 figures accepted for publication to Icaru
MapX: an In-Situ Mapping X-Ray Fluorescence Instrument for Detection of Biosignatures and Habitable Planetary Environments
The search for evidence of life or its processes on other worlds takes on two major themes: the detection of biosignatures indicating extinct or extant life, or the determination that an environment either has or once had the potential to harbor living organisms. In situ elemental imaging is useful in either case, since features on the mm to m scale reveal geological processes which may indicate past or present habitability. Further, biomineralization can leave traces in the morphology and element distribution of surfaces. The Mapping X-ray Fluorescence Spectrometer (MapX) is an in-situ instrument designed to identify these features on planetary surfaces [1]. Progress on instrument development, data analysis methods, and element quantification are presented
Extreme AO Observations of Two Triple Asteroid Systems with SPHERE
We present the discovery of a new satellite of asteroid (130) Elektra -
S/2014 (130) 1 - in differential imaging and in integral field spectroscopy
data over multiple epochs obtained with SPHERE/VLT. This new (second) moonlet
of Elektra is about 2 km across, on an eccentric orbit and about 500 km away
from the primary. For a comparative study, we also observed another triple
asteroid system (93) Minerva. For both systems, component-resolved reflectance
spectra of the satellites and primary were obtained simultaneously. No
significant spectral difference was observed between the satellites and the
primary for either triple system. We find that the moonlets in both systems are
more likely to have been created by sub-disruptive impacts as opposed to having
been captured.Comment: 8 pages, 4 figures, 1 table, accepted to be published in the
Astrophysical Journal Letter
Phaseolin expression in tobacco chloroplast reveals an autoregulatory mechanism in heterologous protein translation
Plastid DNA engineering is a well-established research area of plant biotechnology, and plastid transgenes often give high expression levels. However, it is still almost impossible to predict the accumulation rate of heterologous protein in transplastomic plants, and there are many cases of unsuccessful transgene expression. Chloroplasts regulate their proteome at the post-transcriptional level, mainly through translation control. One of the mechanisms to modulate the translation has been described in plant chloroplasts for the chloroplast-encoded subunits of multiprotein complexes, and the autoregulation of the translation initiation of these subunits depends on the availability of their assembly partners [control by epistasy of synthesis (CES)]. In Chlamydomonas reinhardtii, autoregulation of endogenous proteins recruited in the assembly of functional complexes has also been reported. In this study, we revealed a self-regulation mechanism triggered by the accumulation of a soluble recombinant protein, phaseolin, in the stroma of chloroplast-transformed tobacco plants. Immunoblotting experiments showed that phaseolin could avoid this self-regulation mechanism when targeted to the thylakoids in transplastomic plants. To inhibit the thylakoid-targeted phaseolin translation as well, this protein was expressed in the presence of a nuclear version of the phaseolin gene with a transit peptide. Pulse-chase and polysome analysis revealed that phaseolin mRNA translation on plastid ribosomes was repressed due to the accumulation in the stroma of the same soluble polypeptide imported from the cytosol. We suggest that translation autoregulation in chloroplast is not limited to heteromeric protein subunits but also involves at least some of the foreign soluble recombinant proteins, leading to the inhibition of plastome-encoded transgene expression in chloroplast
The hierarchical stability of the seven known large size ratio triple asteroids using the empirical stability parameters
In this study, the hierarchical stability of the seven known large size ratio triple asteroids is investigated. The effect of the solar gravity and primary’s J(2) are considered. The force function is expanded in terms of mass ratios based on the Hill’s approximation and the large size ratio property. The empirical stability parameters are used to examine the hierarchical stability of the triple asteroids. It is found that the all the known large size ratio triple asteroid systems are hierarchically stable. This study provides useful information for future evolutions of the triple asteroids
Ground-based near-infrared imaging of the HD141569 circumstellar disk
We present the first ground-based near-infrared image of the circumstellar disk around the post-Herbig Ae/Be star HD141569A initially detected with the HST. Observations were carried out in the near-IR (2.2 m) at the Palomar 200-inch telescope using the adaptive optics system PALAO. The main large scale asymmetric features of the disk are detected on our ground-based data. In addition, we measured that the surface brightness of the disk is slightly different than that derived by HST observations (at 1.1 m and 1.6 m). We interpret this possible color-effect in terms of dust properties and derive a minima
- …