681 research outputs found

    Techno-economic comparison of renewable energy systems using multi-pole system analysis (MPSA)

    Full text link
    The recently published method of multi-pole system analysis (MPSA) is used to techno-economically compare two wind-energy converters: offshore wind turbines and the energy ship concept. According to the method, both systems are (i) modeled, (ii) energetically and economically analyzed, (iii) technoeconomically optimized and, finally, (iv) expected uncertainties are calculated and assessed. The results of the method are used to derive the necessary cost reduction of the wind-energy converters to be economically competitive to fossil-fuel-based technologies.The authors would like to thank the Deutsche Forschungsgemeinschaft (DFG) for the financial support in the framework of the Excellence Initiative, Darmstadt Graduate School of Excellence Energy Science and Engineering (GSC 1070)

    State Space Reduction for Dynamic Process Creation

    Get PDF
    Automated verification of dynamic multi-threaded computing systems is severely affected by problems relating to dynamic process creation. In this paper, we describe an abstraction technique aimed at generating reduced state space representations for such systems. To make the new technique applicable to a wide range of different system models, we express it in terms of general labelled transition systems. At the heart of our technique is an equivalence relation on system states based on a suitable isomorphism between their component parts and relationships between component process identifiers. In addition, the equivalence takes into account new process identifiers which can be derived from those present in the states being compared, in effect performing a limited lookahead. Applying state space reduction based on such a state equivalence may produce a finite representation of an infinite state system while still allowing to validate essential behavioural properties, e.g., freedom from deadlocks. We evaluate the feasibility of the proposed method through extensive experiments. The results clearly demonstrate that the new state space reduction technique can be implemented in an efficient way. We also describe how the new state equivalence relation can be implemented for a class of high-level Petri nets supporting dynamic thread creation

    Measuring and simulation of fluid forces in annular gaps – Generic experiments cover-ing the relevant parameter range for turbulent and laminar flow in pumps

    Get PDF
    The reliability and performance of turbomachines like feedwater pumps with a shaft power up to 5 MW is often limited by shaft vibrations. These vibrations are strongly influenced by the forces induced by the laminar or turbulent fluid flow in (i) annular seals, (ii) pistons, and (iii) journal bearings. In general, the annular gap flow is three dimensional: the circumferential flow driven by to viscous forces is superimposed by a pressure driven axial flow. In addition, this axial flow convects swirl into the annular gap. So far, there is a severe lack of understanding this flow. I.e. the state of the art simulation methods fail in reliably predicting the induced fluid forces. To fill this knowledge gap two similar test rigs are designed, build, and now operated at the TU Darmstadt. The generic experiments cover the relevant parameter range for turbulent and laminar flow in pumps. Essentially consisting of two radial magnetic bearings for force measurement, excitation and displacement of the rotor the test rigs allow an adjustable flow number (ratio of axial flow velocity to speed of the rotor) in the range of 0 to 1.6. The ratio of circumferential flow velocity to the speed of the rotor at the inlet of the annulus is also controllable up to 1.4. Additionally the modular design allows relative gap heights in the range of 1 to 10 per mill as well as relative eccentricities up to 0.95. In order to reduce the measurement uncertainties through the use of mechanical seals, the friction forces generated during rotor excitation are systematically measured and the forces, obtained by the magnetic bearings, are corrected. The paper closes by comparing the experimental results to the TU Darmstadt simulation method CAPM and state of the art calculation methods like the turbulent Reynolds equation

    Rheological modelling of viscoelastic fluid in a generic gap of screw pump

    Get PDF
    In this study, the leakage of a non-Newtonian fluid, i.e. silicone oil, in a generic gap was numerically investigated. A CFD tool is used to determine the relationship between leakage flow, gap length and pressure difference. The investigated fluid is viscoelastic and its properties are modelled by a Maxwell equation. The Maxwell model can be used to precisely define the phenomenon of stress relaxation. Moreover, a comparison of the viscosity of measured data with simplified models shows that the Maxwell model is best suited for viscosity prediction. Furthermore, simulation results showed that at low pressures, leakage is reduced by decreasing the gap angle. However, this effect changes with increasing viscosity and relaxation time of the molecule. To determine the pressure drop, the Bagley plot is used. The results confirmed that as the shear rate increases, the elastic pressure drop values increase. In addition, the leakage flow increases with an increasing slenderness ratio

    Optimizing Pressure Screen Systems in Paper Recycling: Optimal System Layout, Component Selection and Operation

    Get PDF
    Around 60% of the paper worldwide is made from recovered paper. Especially adhesive contaminants, so called stickies, reduce paper quality. To remove stickies but at the same time keep as many valuable fibers as possible, multi-stage screening systems with several interconnected pressure screens are used. When planning such systems, suitable screens have to be selected and their interconnection as well as operational parameters have to be defined considering multiple conflicting objectives. In this contribution, we present a Mixed-Integer Nonlinear Program to optimize system layout, component selection and operation to find a suitable trade-off between output quality and yield

    Nanoscopic Tunneling Contacts on Mesoscopic Multiprobe Conductors

    Full text link
    We derive Bardeen-like expressions for the transmission probabilities between two multi-probe mesoscopic conductors coupled by a weak tunneling contact. We emphasize especially the dual role of a weak coupling contact as a current source and sink and analyze the magnetic field symmetry. In the limit of a point-like tunneling contact the transmission probability becomes a product of local, partial density of states of the two mesoscopic conductors. We present expressions for the partial density of states in terms of functional derivatives of the scattering matrix with respect to the local potential and in terms of wave functions. We discuss voltage measurements and resistance measurements in the transport state of conductors. We illustrate the theory for the simple case of a scatterer in an otherwise perfect wire. In particular, we investigate the development of the Hall-resistance as measured with weak coupling probes.Comment: 10 pages, 5 figures, revte

    Knotting and unknotting of a protein in single molecule experiments.

    Get PDF
    Spontaneous folding of a polypeptide chain into a knotted structure remains one of the most puzzling and fascinating features of protein folding. The folding of knotted proteins is on the timescale of minutes and thus hard to reproduce with atomistic simulations that have been able to reproduce features of ultrafast folding in great detail. Furthermore, it is generally not possible to control the topology of the unfolded state. Single-molecule force spectroscopy is an ideal tool for overcoming this problem: by variation of pulling directions, we controlled the knotting topology of the unfolded state of the 52-knotted protein ubiquitin C-terminal hydrolase isoenzyme L1 (UCH-L1) and have therefore been able to quantify the influence of knotting on its folding rate. Here, we provide direct evidence that a threading event associated with formation of either a 31 or 52 knot, or a step closely associated with it, significantly slows down the folding of UCH-L1. The results of the optical tweezers experiments highlight the complex nature of the folding pathway, many additional intermediate structures being detected that cannot be resolved by intrinsic fluorescence. Mechanical stretching of knotted proteins is also of importance for understanding the possible implications of knots in proteins for cellular degradation. Compared with a simple 31 knot, we measure a significantly larger size for the 52 knot in the unfolded state that can be further tightened with higher forces. Our results highlight the potential difficulties in degrading a 52 knot compared with a 31 knot.N.C.H.L. is supported by a UBD Chancellor’s Scholarship from the Brunei Government. W.N. was supported by the Ministry of Education (MoE) Singapore. S.S.M acknowledges funding from the Alexander von Humboldt Foundation. This work was supported by an SFB 863 A2 grant of Deutsche Forschungsgemeinschaft to M.R

    Targeted deletion of miR-132/-212 impairs memory and alters the hippocampal transcriptome

    Get PDF
    miR-132 and miR-212 are structurally related microRNAs that have been found to exert powerful modulatory effects within the central nervous system (CNS). Notably, these microRNAs are tandomly processed from the same noncoding transcript, and share a common seed sequence: thus it has been difficult to assess the distinct contribution of each microRNA to gene expression within the CNS. Here, we employed a combination of conditional knockout and transgenic mouse models to examine the contribution of the miR-132/-212 gene locus to learning and memory, and then to assess the distinct effects that each microRNA has on hippocampal gene expression. Using a conditional deletion approach, we show that miR-132/-212 double-knockout mice exhibit significant cognitive deficits in spatial memory, recognition memory, and in tests of novel object recognition. Next, we utilized transgenic miR-132 and miR-212 overexpression mouse lines and the miR-132/-212 double-knockout line to explore the distinct effects of these two miRNAs on the transcriptional profile of the hippocampus. Illumina sequencing revealed that miR-132/-212 deletion increased the expression of 1138 genes; Venn analysis showed that 96 of these genes were also downregulated in mice overexpressing miR-132. Of the 58 genes that were decreased in animals overexpressing miR-212, only four of them were also increased in the knockout line. Functional gene ontology analysis of downregulated genes revealed significant enrichment of genes related to synaptic transmission, neuronal proliferation, and morphogenesis, processes known for their roles in learning, and memory formation. These data, coupled with previous studies, firmly establish a role for the miR-132/-212 gene locus as a key regulator of cognitive capacity. Further, although miR-132 and miR-212 share a seed sequence, these data indicate that these miRNAs do not exhibit strongly overlapping mRNA targeting profiles, thus indicating that these two genes may function in a complex, nonredundant manner to shape the transcriptional profile of the CNS. The dysregulation of miR-132/-212 expression could contribute to signaling mechanisms that are involved in an array of cognitive disorders
    corecore