
Scienti�c Annals of Computer Science vol. 20, 2010

�Alexandru Ioan Cuza� University of Ia³i, Romania

State Space Reduction for
Dynamic Process Creation

Hanna KLAUDEL1, Maciej KOUTNY2,
Elisabeth PELZ3, Franck POMMEREAU1

Abstract

Automated veri�cation of dynamic multi-threaded computing sys-

tems is severely a�ected by problems relating to dynamic process cre-

ation. In this paper, we describe an abstraction technique aimed at

generating reduced state space representations for such systems. To

make the new technique applicable to a wide range of di�erent system

models, we express it in terms of general labelled transition systems.

At the heart of our technique is an equivalence relation on system

states based on a suitable isomorphism between their component parts

and relationships between component process identi�ers. In addition,

the equivalence takes into account new process identi�ers which can

be derived from those present in the states being compared, in e�ect

performing a limited lookahead.

Applying state space reduction based on such a state equivalence

may produce a �nite representation of an in�nite state system while

still allowing to validate essential behavioural properties, e.g., freedom

from deadlocks. We evaluate the feasibility of the proposed method

through extensive experiments. The results clearly demonstrate that

the new state space reduction technique can be implemented in an

e�cient way.

We also describe how the new state equivalence relation can be

implemented for a class of high-level Petri nets supporting dynamic

thread creation.

Keywords: multi-threaded systems, state equivalence, state space

computation, state space reduction.
1IBISC, Université d'Évry, Tour Évry 2, 523 place des terrasses, 91000 Évry, France,

email: {klaudel,pommereau}@ibisc.univ-evry.fr
2School of Computing Science, Newcastle University, Newcastle upon Tyne, NE1 7RU,

United Kingdom, email: maciej.koutny@ncl.ac.uk
3LACL, Université Paris Est, 61 avenue du général de Gaulle, 94010 Créteil, France,

email: pelz@univ-paris12.fr

131

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201528005?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

In a multi-threaded programming paradigm, sequential code can be run
repeatedly in concurrent threads of execution, interacting through shared
data and/or rendez-vous communication. The presence of thread identi�ers
in state descriptions usually accelerates the state space explosion, especially
when new threads may be created dynamically. However, thread identi�ers
are arbitrary (anonymous) symbols whose sole role is to ensure a consistent
execution of each thread. The exact identity of an identi�er is irrelevant,
and what only matters are the relationships between such identi�ers, e.g.,
parenthood or siblinghood. As a result, (sets of) identi�ers may often be
replaced by other (sets of) identi�ers without changing the resulting execu-
tion in an essential way. This creates a possibility of identifying equivalent
executions, which must be addressed by any veri�cation and/or simulation
approach to multi-threaded programming schemes.

We aim at an abstraction technique for generating reduced state space
representations for multi-threaded systems with dynamic process creation.
To make it applicable to a wide range of di�erent system models, we con-
sider in this paper a general model-independent (behavioural) framework of
labelled transition systems. We formulate conditions allowing one to iden-
tify behaviourally equivalent system states and, since state equivalence is
required to be preserved over system evolutions, to identify equivalent execu-
tions. The equivalence relation on system states is based on an isomorphism
between their component parts and relationships between the component
process identi�ers. Moreover, one takes into account new process identi�ers
which can be derived from those present in the states being compared, in
e�ect performing a limited lookahead. Applying state space reduction based
on such a state equivalence may even in some cases produce a �nite repre-
sentation of an in�nite state system while still allowing to validate essential
behavioural properties, e.g., freedom from deadlocks.

Another distinguishing feature of the proposed state equivalence is that
it is parameterised by a set of operations that can be applied to thread
identi�ers. For instance, it may or may not be allowed to test whether one
thread is a direct or indirect descendant of another thread. The approach
easily adapts to what is usually allowed and this can be a crucial point to
maximise the degree of state space reduction. As shown later on, using fewer
operations usually leads to better reduction, because process identi�ers are
more likely to be equivalent if there are fewer possibilities to compare them.

We evaluate the feasibility of the proposed method through extensive

132

experiments in order to show that the new state space reduction technique
can be implemented in an e�cient way. We also present a concrete system
model based on high-level Petri nets, in which the key property required of
the state equivalence relation � its preservation over system evolution �
holds thanks to mild syntactic restrictions placed upon the structure of the
net. In this way, the paper prepares the ground for future applications of
the new state space reduction technique.

The approach presented in this paper systematises and extends our ear-
lier work initiated in [11, 12]: in particular, the Petri net implementation of
our approach has been dramatically simpli�ed, all the proofs are now pro-
vided, and we now consider an additional isomorphism algorithm and draw
conclusions based on a rigorous analysis of our experimental measurements.

Running example. Let us consider a server system in which
a bunch of threads listen for connections from clients requesting
some calculation. Figure 1 shows a message sequence chart of a
typical session. Whenever a new request arrives, a listener thread
creates a handler thread to process the request. The handler calls
an auxiliary function to perform the required calculation and
then sends the answer back to the client. Terminated handlers
are collected asynchronously by the thread that created them.
The client part is depicted for the sake of clarity but will not be
considered in the model to keep things simpler.

This example illustrates two standard ways of calling a sub-
program: either asynchronously by creating a thread, or syn-
chronously by calling a function. In our setting, both these
methods amount to creating a new thread, the only di�erence
is that a function call is modelled by creating a thread and im-
mediately waiting for its termination.

The paper is organised as follows. We �rst characterise the class of
labelled transition systems for which it is feasible to apply identi�cation of
states inspired by the marking equivalence of [11]. We then provide ex-
perimental results about the e�ort needed to verify the state equivalence
which rea�rms our initial hypothesis that this can be done in an e�cient
way. Finally, we show how the state equivalence can be treated in a class
of high-level Petri nets supporting dynamic thread creation. More precisely,
for each net in this class the generated labelled transition system satis�es
all the requirements formulated in the general setting.

133

Client Listener Handler Function

submit(pid,req)
create(pid,addr,req)

call(pid,req)
comp(pid,req)

ret(pid,res)
answer(pid,res)

wait(pid)

Figure 1: Running example: sequence diagram of a session.

2 Multi-thread modelling

We denote by D the set of data values, and by P df
= {π, π′, π′′, . . .} a disjoint

set of process identi�ers, (or pids for short) that allow one to distinguish
di�erent concurrent threads during an execution. We assume that there is a
set I ⊂ P of initial pids, i.e., threads active at the system startup. A possible
way of implementing dynamic pid creation�and one adopted in this paper�
is to consider them as �nite sequences of positive integers (written down as
dot-separated strings, for example, 1.2 or 2.3.1). In modelled systems, it is
not allowed to decompose a pid (e.g., to extract the parent pid of a given pid)
which is considered to be an atomic value (a black box), nor it is allowed to
use concrete pid values (literals).

To compare pids within Boolean expressions, we use a set of binary
relations on pids, Ωpid

df
= {=,^1,^,t1,t}, such that:

• = is the equality on pids;

• π ^1 π
′ (which holds if there is a positive integer i such that π.i = π′)

means that π is the parent of π′ (i.e., thread π created thread π′);

• π^π′ means that π is an ancestor of π′ (i.e., ^ is the transitive closure
^+
1);

• π t1 π
′ (which holds if there is a pid π′′ and a positive integer i such

that π = π′′.i and π′ = π′′.(i+ 1)) means that π is a sibling of π′ and
π was created immediately before π′ (i.e., after creating π, the parent
π′′ of π and π′ did not create any other thread before creating π′); and

• π t π′ means that π is an elder sibling of π′ (i.e., t is the transitive
closure t+

1).

134

It is assumed that only the operators in Ωpid can be used to compare pids.
The above scheme has several advantages: it is deterministic and can

be distributed to support concurrent generation of pids; it is simple and easy
to implement; and it may be bounded by restricting, e.g., the length of the
pids, or the maximal number of pid instances spawned by each thread.

3 Transition systems and state equivalence

In this paper, a labelled transition system LTS provides a description of
all reachable states of some multi-threaded system, operating over some
�nite set of locations L, together with transitions between these states. As
usual, there is a distinguished initial state from which all other states can be
reached. Locations may correspond intuitively to the variables of the system
under analysis, or to any other similar �data holder�. Each state q

df
= (σq, ηq)

is composed of a pair of mappings:

• a mapping σq from L to �nite multisets of vectors (tuples) of data and
pids;

• a mapping ηq which for each active thread (i.e., one which belongs to
the domain of ηq) gives the number of threads it has already created.

Given a state q as above, we de�ne the following:

• For each active pid π in q the next pid created (also called next-pid)
is given by nextq(π)

df
= π.(ηq(π) + 1);

• The next-pids of q are nextpidq
df
= {nextq(π) | π ∈ dom(ηq)};

• pidq is the set of all pids involved in σq; and

• (Gq, Hq)
df
= (pidq, ηq) is the thread con�guration of q.

Each transition q
t−−−−−−−−→ q′ of an LTS is labelled by t which can be the

name of a command or action (possibly internal) together with the actual
parameters which may include pids present in pidq.

Assumption 1 When moving from a state q to q′ along a transition q
t−−−−−−−−→

q′, the pids present in q′ must either be present in q or be newly created using
the information provided by ηq (i.e., pidq′ ⊆ pidq ∪ nextpidq). Moreover,

any pid active at q′ must be active in q or be a newly created one (i.e.,
dom(ηq′) ⊆ dom(ηq) ∪ nextpidq).

135

Not all potential states can be considered as valid. For example, one
should prohibit the generation of an already existing pid. This can be
achieved by requiring that no pid involved in σq can be derived as a fu-
ture child of an active thread.

Assumption 2 Each state q reachable from the initial one generates a con-
sistent thread con�guration (or ct-con�guration) (Gq, Hq) which means that:

• dom(Hq) ⊆ Gq, i.e., each active pid is present in the state; and

• for all π ∈ dom(Hq) and π
′ ∈ Gq, if π.k is a pre�x of π′ then k ≤ ηq(π),

i.e., pids present in q cannot be created again.

In the rest of the section we will introduce the notion of equivalence for
reachable states of an LTS. First, however, we look at our example.

Running example. An initial fragment of the LTS for the
server system is illustrated in Figure 2, where:

• I = {1, 2};
• L = {L,H, F} are the locations;
• 1, 2, 1.1, 1.2, 2.1, 2.2, 1.1.1 and 2.1.1 are pids; and

• 2009, 0 and addr are data items.

It portrays two alternative execution branches corresponding to
the same scenario played by two di�erent threads. In this sce-
nario, a server calculates whether a given year is a leap year.
A listener receives a data req = 2009, creates a handler, and
passes to it req together with client's address addr . The handler
calls a function passing req to it, the function calculates the re-
sult res = 0, and returns it to the handler. The handler passes
on the result to the client (not modelled). Finally, the listener
terminates the handler.

Looking at Figure 2, one can note that the two branches,

q0
t1−−−−−−−−→ q1

t2−−−−−−−−→ · · · t5−−−−−−−−→ q5 and q′0
t′1−−−−−−−−→ q′1

t′2−−−−−−−−→ · · · t′5−−−−−−−−→ q′5 ,

are intuitively equivalent since the roles of pids 1 and 2 can be
swapped to obtain one from the other. Moreover, q0 is equivalent
to q5 and q′5. For example, q5 is the same as q0 except for the
value of η(1).

136

q0
L : 〈1〉 〈2〉
H :
F :

1 7→ 0
2 7→ 0

q1
L : 〈1〉 〈2〉
H : 〈1.1, addr, 2009〉
F :

1 7→ 1
2 7→ 0
1.1 7→ 0

q2
L : 〈1〉 〈2〉
H : 〈1.1, addr, 2009〉
F : 〈1.1.1, 2009〉

1 7→ 1
2 7→ 0
1.1 7→ 1
1.1.1 7→ 0

q3
L : 〈1〉 〈2〉
H : 〈1.1, addr, 2009〉
F : 〈1.1.1, 0〉

1 7→ 1
2 7→ 0
1.1 7→ 1
1.1.1 7→ 0

q4
L : 〈1〉 〈2〉
H : 〈1.1, addr, 0〉
F :

1 7→ 1
2 7→ 0
1.1 7→ 1

q5
L : 〈1〉 〈2〉
H :
F :

1 7→ 1
2 7→ 0

q′1
L : 〈1〉 〈2〉
H : 〈2.1, addr, 2009〉
F :

1 7→ 0
2 7→ 1
2.1 7→ 0

q′2
L : 〈1〉 〈2〉
H : 〈2.1, addr, 2009〉
F : 〈2.1.1, 2009〉

1 7→ 0
2 7→ 1
2.1 7→ 1
2.1.1 7→ 0

q′3
L : 〈1〉 〈2〉
H : 〈2.1, addr, 2009〉
F : 〈2.1.1, 0〉

1 7→ 0
2 7→ 1
2.1 7→ 1
2.1.1 7→ 0

q′4
L : 〈1〉 〈2〉
H : 〈2.1, addr, 0〉
F :

1 7→ 0
2 7→ 1
2.1 7→ 1

q′5
L : 〈1〉 〈2〉
H :
F :

1 7→ 0
2 7→ 1

create(1, addr, 2009) create(2, addr, 2009)

call(1.1, 2009)

comp(1.1.1, 2009)

ret(1.1, 0)

wait(1)

call(2.1, 2009)

comp(2.1.1, 2009)

ret(2.1, 0)

wait(2)

Figure 2: A possible LTS for the running example: σq is shown in the left
and ηq in the right part of each state.

We can now proceed with the formal de�nition of states equivalence. It
should be stressed that our formalisation is more elaborate than the equiv-
alence relations such as that de�ned in abstract terms in [8]. The reason is
that our de�nition not only looks at the actual components of two states be-
ing compared, but also `looks ahead' including potential future component
pids which can be created from the existing ones. Clearly, such a looka-
head strategy needs to be carefully designed in order not to make the whole
approach infeasible.

137

De�nition 1 Two states q and q′ de�ning ct-con�gurations are equivalent
if there is a bijection h : (pidq ∪ nextpidq) → (pidq′ ∪ nextpidq′) such that

for all relations ≺ ∈ {^1,^} and f ∈ {t1,t}:

• h(dom(ηq)) = dom(ηq′);

• ∀π ∈ dom(ηq), h(nextq(π)) = nextq′(h(π));

• ∀π, π′ ∈ pidq: π ≺ π′ i� h(π) ≺ h(π′);

• ∀π, π′ ∈ pidq ∪ nextpidq: π f π′ i� h(π) f h(π′);

• σq′ is σq after replacing each pid π by h(π).

We denote this by q ∼h q′ (or q ∼ q′).

The lookahead feature in the above de�nition stems from the fact that
the mapping h used to relate the two states operates on the pids in pidq ∪
nextpidq and pidq′ ∪ nextpidq′ , and so takes into account pids which are
not present in the states being compared. In contrast, a similar alternative
mapping halt in the approach of, e.g., [8] would be of the form halt : pidq →
pidq′ . Now, the argument in support of our approach is very strong because
no mapping halt could in general provide a satisfactory solution. To prove
that we do need the next-pids (i.e.nextpidq and nextpidq′) in De�nition 1,
we provide a simple example.

Counterexample. Let q and q′ be states such that pidq =
{1, 1.1}, ηq(1) = 1, pidq′ = {5, 5.1} and ηq′(5) = 3. Then con-
sider a bijection halt : pidq → pidq′ such that halt(1) = 5 and
halt(1.1) = 5.1. Everything is �ne as far as preserving the par-
enthood/siblinghood of the corresponding pids is concerned. Let
us now imagine that the two corresponding active threads, 1 and
5, created new pids, leading respectively to new states r and r′

such that pidr = {1, 1.1, 1.2} and pidr′ = {5, 5.1, 5.4}. Then
the two new states are no longer equivalent, because 1.1 t1 1.2
yet 5.1 6t1 5.4. This violates the preservation of the immediate
siblinghood relation of the corresponding pids, and so the two
new states are not equivalent. By including next-pids in the def-
inition of our mapping h, we avoid the problem as q and q′ are
no longer equivalent states.

138

To be of use for state space reduction, the equivalence relation intro-
duced in De�nition 1 should be preserved through possible executions.

Assumption 3 If q ∼h q′ and q t−−−−−−−−→ r then q′
h(t)−−−−−−−−−−→ r′ and r ∼h′ r′ where

h and h′ coincide on the intersection of their domains. And similarly for

q′ t′−−−−−−−−→ r′.
Note: h(t) denotes t with each occurrence of π ∈ pidq replaced by h(π).

The above assumption (which needs to be demonstrated for each con-
crete system model such as that described in Section 6) means that ∼ be-
haves like a strong bisimulation relation and can therefore be regarded as
su�cient, e.g., for the purpose of state reduction for deadlock detection.
Moreover, the fact that the bijection h is preserved on the retained pids over
the corresponding transitions means that it is also su�cient if one deals
with properties of individual (abstracted) threads over sequences of states,
making it compatible with the unfolding based veri�cation technique [10].

4 Checking state equivalence

Checking state equivalence proceeds in two phases. First, candidate states
are mapped to layered labelled directed graphs (or LGs), and then the LGs
are checked for graph isomorphism.

LGs are constructed as follows. The �rst layer is labelled by locations,
the second layer by (abstracted) vectors, the third layer by (abstracted)
active pids and the fourth layer by (abstracted) next-pids. The arcs are
of two sorts: those going from the container object towards the contained
object (locations contain vectors which contain pids), and those between the
vertices of the third and fourth layers re�ecting the relationship between the
corresponding pids through the comparisons in Ω?

pid
df
= {/1, . . . , /k}, where

Ω?
pid is Ωpid without the equality relation and without any relation that is not

needed in the model (i.e., the concrete system model generating an LTS does
not use such a relation). Figures 3 and 4 show examples with Ω?

pid = {^1}.
The abstraction mapping b c : D ∪ P→ D ∪ {ε} is de�ned as the identity on
D and as a constant mapping ε on P, extended component-wise to vectors.

Let q
df
= (σq, ηq) be a state of an LTS. Then the corresponding labelled

graph representation

LG(s)
df
= (V ;A,A/1 . . . , A/k ;λ) ,

139

where V is the set of vertices (which is composed of location names, vectors
and pids), A,A/1 , . . . , A/k are sets of arcs and λ is a labelling on vertices
and arcs, is de�ned as follows:

1. First layer: for each location ` ∈ L such that σq(`) 6= ∅, ` is a vertex
in V labelled by itself, i.e., `.

2. Second layer: for each location ` ∈ L and for each vector v ∈ σq(`), v
is a vertex in V labelled by bvc and ` −−−−−−−−→ v is an unlabelled arc in A.

3. Third layer: for each vertex v of the second layer and for each pid π in
v at the position n (in the vector), π is an ε-labelled vertex in V and
there is an arc v

n−−−−−−−−→ π in A.

4. Fourth layer: for each active pid π, its potential next child, nextq(π),
is a vertex in V labelled by ε.

For all vertices π, π′ of the third and fourth layers, and for all 1 ≤ j ≤ k,

there is an arc π
/j−−−−−−−−→ π′ in A/j i� π /j π

′, i.e., A/j de�nes the graph of the
relation /j on V ∩ P. There is no other vertex nor arc in LG(s).

In diagrams, we do not show arcs for relations that can be deduced

from the depicted ones. For instance, if there exists a path x
^1−−−−−−−−→ y

^1−−−−−−−−→ z,

then we do not depict the arc x
^−−−−−−−−→ z nor x

^−−−−−−−−→ y nor y
^−−−−−−−−→ z.

Theorem 1 Let q1 and q2 be two reachable states. Then LG(q1) and LG(q2)
are isomorphic i� q1 ∼ q2.

Proof: (sketch) Let LGi
df
= LG(qi) = (Vi;Ai, Ai/1 , . . . , Ai/k ; λi) for i ∈

{1, 2}.
(⇒) Let h : V1 → V2 be an isomorphism between LG1 and LG2, such

that ∀v ∈ V1, λ1(v) = λ2(h(v)) and ∀u, v ∈ V1, λ1((u, v)) = λ2((h(u), h(v))).
The states qi

df
= (σqi , ηqi) can easily be obtained from LGi: (i) vertices of the

second layer represent the vectors associated to locations which are vertices
of the �rst layer; this allows one to obtain σqi ; and (ii) vertices of the fourth
layer allow to retrieve ηqi , i.e., for each such vertex π.j ∈ Vi, there is an
active thread π in qi and ηqi(π) = j − 1. Moreover, all pids (present as
vertices of the third and fourth layer) are related through h, which is always
the identity on data. So, the state equivalence follows.

(⇐) Let q1 ∼h q2. By de�nition, LG1 and LG2 only di�er by the
identity of some vertices (their number, arcs and labelling being identical).
By de�nition of the state equivalence, h is the identity on data and relates

140

}
layer 1

}
layer 2

}
layer 3

}
layer 4

L

〈ǫ〉

ǫ

ǫ

〈ǫ〉

ǫ

ǫ

H

〈ǫ, addr, 2009〉

ǫ

ǫ

F

〈ǫ, 2009〉

ǫ

ǫ

0

∢1

0

∢1

∢1

0

∢1

∢1

0

∢1

}
layer 1

}
layer 2

}
layer 3

}
layer 4

L

〈2〉

2

2.1

〈1〉

1

1.2

H

〈1.1, addr, 2009〉

1.1

1.1.2

F

〈1.1.1, 2009〉

1.1.1

1.1.1.1

0

∢1

0

∢1

∢1

0

∢1

∢1

0

∢1

Figure 3: LG of q3 and below its version with explicit vertex names included
to improve readability.

pids between q1 and q2. So h relates in the same way the identities of vertices
in V1 and V2. 2

Running example. In our server example, the siblinghood
relation is not needed to compare pids. Indeed, the only re-
quirement is that a parent thread waits for one of its children to
terminate. So it is not necessary to consider t1 nor t in Ω?

pid .
After taking this into account, the identi�cation of equivalent
states in the LTS of Figure 2 leads to a reduced state space.
First, the LGs of q3 and q

′
3 are clearly isomorphic (see Figure 3).

The same holds for all pairs qi, q
′
i for 1 ≤ i ≤ 5. Thus, only

one of the two execution branches would be present in a reduced
representation, which shows how symmetric executions can be
identi�ed.

Note that considering also the siblinghood relation for LG(q3)
and LG(q′3) would add extra arcs, e.g., from the node of pid 1 to-
wards that of pid 2. This would result in losing the isomorphism
of the two LGs. Consequently, in order to increase the reduction

141

rate, it is important to keep in Ω?
pid only those relations that

actually used by the system model generating an LTS.

L

〈ε〉

ε

ε

〈ε〉

ε

ε

0

∢1

0

∢1

Figure 4: LG of q0.

Let us then consider the initial state q0 whose LG is represented
in Figure 4. It is easy to check that it is isomorphic to the LGs of
q5 and q

′
5. Thus, the in�nite behaviour that is present in each ex-

ecution branch can be reduced to a loop because we consistently
abstract away the information about newly generated pids.

5 Experimental results

As the complexity of checking graph isomorphism is in general unknown,
it is essential to evaluate how e�cient in practice it can be veri�ed in the
case of checking the state equivalence de�ned in the previous section. We
therefore devised a systematic and thorough series of experiments aimed at
estimating the complexity of checking the isomorphism of graphs generated
by two states. We started by observing the following:

Checking isomorphism will, in general, be very e�cient when the

states being compared di�er signi�cantly, e.g., when the number

of non-empty locations or pids involved is di�erent.

The reason is that in such cases the non-equivalence can be detected, e.g.,
in linear time w.r.t. the number of locations. In particular, the experiments
should not consider pairs of independently generated states, as they are likely
to di�er by a wide margin. Consequently, the adopted testing methodology
consisted in generating a random state q and then comparing it with a num-
ber of similar (both equivalent or non-equivalent) states obtained through a
number of transformations modifying the original state q.

142

The above methodology stems from our overall aim not to provide a
veri�cation tool but instead a method to be incorporated into such a tool.
Using a set of veri�cation case studies would not be appropriate for our
purpose because this could introduce an undesirable bias. Indeed, any case
study would necessarily yield states of a particular shape that could in�uence
the e�ciency of isomorphism checking. Furthermore, one would expect that
any set of case studies contains balanced subsets of favourable, neutral and
unfavourable cases. Considering randomly generated states can therefore be
viewed as considering an arbitrarily diversi�ed set of case studies. Moreover,
as explained above, we have considered only similar states and thus only
the less favourable cases from the point of view of our approach. As a
consequence, our results can be seen as concerning the worst cases of any
speci�c case study. Finally, running e�ective case studies would imply much
more than checking isomorphisms, which would also introduce bias since
the overall performance would then be in�uenced by many more (di�cult
to control) factors.

To illustrate transformations used in our experiments, let us consider
the following example with two locations, each location comprising two vec-
tors:

L : 〈 2:2, 2 〉 〈 3, 2.1:0 〉
L′ : 〈 1:0, 3, 4:0 〉 〈 2.2:0 〉

where each pid is followed by a colon and the number of threads it has
already created. The transformations we applied were as follows:

• Transform component vectors so that the resulting state is equivalent:

L : 〈 2.3.2.5:5, 2 〉 〈 3, 2.3.2.5.4:3 〉
L′ : 〈 2.3.2.4:3, 3, 2.3.2.7:3 〉 〈 2.3.2.5.5:3 〉

• Exchange vectors between locations:

L : 〈 3, 2.1:0 〉 〈 1:0, 3, 4:0 〉
L′ : 〈 2.2:0 〉 〈 2:2, 2 〉

• Exchange components within vectors:

L : 〈 2, 2:2 〉 〈 2.1:0, 3 〉
L′ : 〈 4:0, 3, 1:0 〉 〈 2.2:0 〉

143

• Exchange data and/or pid components between vectors:

L : 〈 2:2, 3 〉 〈 2, 2.1:0 〉
L′ : 〈 1:0, 3, 4:0 〉 〈 2.2:0 〉
L : 〈 2.1:0, 2 〉 〈 3, 2:2 〉
L′ : 〈 4:0, 3, 2.2:0 〉 〈 1:0 〉
L : 〈 2.1:0, 3 〉 〈 2, 2:2 〉
L′ : 〈 4:0, 3, 2.2:0 〉 〈 1:0 〉

• Replace pids:

L : 〈 26.25.25:0, 2 〉 〈 3, 32.32.33:1 〉
L′ : 〈 35.35.34:0, 3, 32.32.33:1 〉 〈 32.32.33.1:0 〉

• Increment the count of created pids:

L : 〈 2:4, 2 〉 〈 3, 2.1:0 〉
L′ : 〈 1:2, 3, 4:4 〉 〈 2.2:3 〉

All these transformations were randomised with suitable parameters in order
to control, e.g., the number of exchanged pids.

In order to check graph isomorphism, we used NetworkX [5] implement-
ing the VF2 [4] algorithm, as well as Sage [17] implementing the Nauty [14]
algorithm that is usually regarded as the most e�cient one. We carried out
more than two millions of comparisons, on the basis of which we observed
that the computation time:

• deteriorates with the state size and with the percentage of pids in
vectors (w.r.t. data); and

• improves with the increase of distinct data values.

This should not be surprising. In particular, the presence of data leads to
labelled nodes that can be quickly matched when comparing two graphs. We
further observed that Nauty is more e�cient than VF2, and so the analysis
below is based on the results obtained for Nauty.

The experimental results are depicted in Figure 5 which shows the com-
putation time t with respect to the number p of distinct pids in the system.
We can clearly identify there two distinct components (groupings of mea-
surements):

144

• the lower part which looks linear, or slightly sub-linear; and

• the upper part which visually �ts in-between O(p2) and O(p log p)
curves.

Each component was analysed separately using the same method.
We �rst extracted the components as vectors of indexed pairs (pi, ti)

with ti being the observed computation time for a given number pi of pids
(see also Figure 5):

C1
df
=
[
(pi, ti) | (1 ≤ i ≤ k1) ∧ (pi ≥ 200) ∧ (ti <

20 pi
1800)

]

C2
df
=
[
(pi, ti) | (1 ≤ i ≤ k2) ∧ (pi ≥ 200) ∧ (ti >

20 pi
1800)

]
,

where ti = 20 pi
1800 corresponds to the straight dotted line in Figure 5, and

pi ≥ 200 is where the two components are clearly separated. We also ensured
that both C1 and C2 are ordered so that pi ≤ pj whenever i < j. As it turned
out, C1 comprises 78% of the observations for p ≥ 200, while only 22% are
in C2.

Let us assume that within the components C1 and C2, t can respectively
be characterised by O(p) and O(p log p). To verify this assumption, we
computed two more vectors:

D1
df
=
[
ti
pi
| (pi, ti) ∈ C1

]
and D2

df
=
[

ti
pi log pi

| (pi, ti) ∈ C2

]
.

By drawing a histogram of each Dj we checked that its values were grouped
around 0.0045 forD1, and 0.0075 forD2. To gain more con�dence about this
distribution, we sub-divided eachDj into successive segments (corresponding
to growing pis) and drawn their histograms. Then, taking D1 as an example,
we have that:

• if t = O(p) then the histograms should be similar for each segment;

• if t > O(p) then the histogram of each segment should be right-shifted
w.r.t. that of the previous segment; and

• if t < O(p) then the histogram corresponding of each segment should
be left-shifted w.r.t. that of the previous segment.

Figure 6 show the histograms for D1 and D2 with 4 segments. We can now
make the following observations (which turned out to be the same for other
numbers of segments that we tried):

145

Figure 5: Top: observed computation times t w.r.t the number p of unique
pids in compared states (darker points correspond to more frequent obser-
vations). The straight line is O(p), the upper curve is O(p log p) and the
lower curve is O(p2). Bottom: two components, C1 (left) and C2 (right).

146

• the left column con�rms that t = O(p) within C1;

• in the middle column, there is a progressive right-shift of the his-
tograms when we go down the column, and so t > O(p log p) within
C2; and

• the right column showing the histograms for D′
2

df
=
[
ti
pi2
| (pi, ti) ∈ C2

]

con�rms that t < O(p2) within C2.

This provides a full justi�cation of the earlier visual observation made for
Figure 5. Moreover, since in the right column the shifting is faster than in
the middle one, it follows that for D2 t is closer to O(p log p) than O(p2).

As a result, we are in a position to conclude that the cost of checking
state equivalence is very low for states that di�er considerably (in practice,
a majority of the compared pairs), and is still very good for states that are
equivalent or similar: for 78% of them, it is linear with respect to the number
p of unique pids in the state, and for the remaining 22%, the computation
time is slightly higher than O(p log p).

Moreover, it should be noted that discovering equivalent states allows
one to limit the state space exploration. Potential reduction may also al-
low to analyse systems with in�nite state spaces, or state spaces which are
too large to �t into the computer's memory, and thus would have been in-
tractable regardless of the computation time.

6 Petri net implementation

In this section, we will introduce a class of high-level Petri nets4 for which
the approach described above always works. More precisely, the syntactic
restrictions imposed on these nets will imply Assumptions 1-3, and so for
each net in this class the generated labelled transition system will satisfy all
the requirements formulated in the general setting.

The kind of (�nite) high-level Petri net we have in mind is a tuple
N

df
= (S, T,Λ,M0) which consists of a set S of places, a set T of transitions

(disjoint from S), a labelling Λ of places, transitions and arcs (in (S × T) ∪
(T ×S)), and an initial marking M0 (which is a mapping that associates to
each s ∈ S a �nite multiset of values in Λ(s)) such that:

4We assume that the reader is familiar with the basic notions concerning high-level
Petri nets [13].

147

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.0100

100

200

300

400

500

600

700

800

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.090

50

100

150

200

250

300

350

400

0.00000 0.00005 0.00010 0.00015 0.00020 0.000250

50

100

150

200

250

300

350

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.0100

100

200

300

400

500

600

700

800

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.090

50

100

150

200

250

300

0.00000 0.00005 0.00010 0.00015 0.00020 0.000250

50

100

150

200

250

300

350

400

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.0100

100

200

300

400

500

600

700

800

900

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.090

50

100

150

200

250

300

0.00000 0.00005 0.00010 0.00015 0.00020 0.000250

50

100

150

200

250

300

350

400

450

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.0100

100

200

300

400

500

600

700

800

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.090

50

100

150

200

250

0.00000 0.00005 0.00010 0.00015 0.00020 0.000250

100

200

300

400

500

600

Figure 6: Left column: the j-th row from the top (0 ≤ j ≤ 3) shows the
distribution of ti

pi
for (pi, ti) ∈ D1 such that j

4k1 < i ≤ j+1
4 k1 (i.e., the j-th

segment of D1). Middle and right columns: distributions for ti
pi log pi

and ti
pi2

respectively, for (pi, ti) ∈ D2.

1. For each place s ∈ S, the type of s, Λ(s), is a Cartesian product
X1 × · · · ×Xk (k ≥ 1), where each Xi is P or D.

2. The set of places of N contains a unique generator place sη having
the type P×N. It is used by the underlying scheme to implement the
mapping η that is needed when new threads are spawned. For each
active thread identi�ed by π, the generator place stores a token 〈π, i〉
where i is the integer counter of the child threads already spawned
by π. Thus the next threads to be created by π will have the pids
π.(i+ 1), π.(i+ 2), etc.

148

3. We assume that the initial markingM0 of N is such that the generator
place contains exactly one token, and all other places are empty. This
implies that I is reduced to a single element.5

4. For each transition t ∈ T , the annotation on the arc from the generator
place to t is a set of the form

Λ(sη, t)
df
= {〈p1, c1〉, . . . , 〈pk, ck〉}

where k ≥ 0 and all the pi's and ci's are distinct pid and counter
variables. The annotation on the arc from t to the generator place is
a set of the form:

Λ(t, sη)
df
=

〈p1, c1 + n1〉, . . . , 〈pm, cm + nm〉,
〈p1.(c1 + 1), 0〉, . . . , 〈p1.(c1 + n1), 0〉,
. . .
〈pk.(ck + 1), 0〉, . . . , 〈pk.(ck + nk), 0〉

where m ≤ k, and nj ≥ 0 for all j.6 An empty arc annotation means
that the arc is absent.
Below we denote by Πt the set of all the pid expressions pi.(ci + j)
used in Λ(t, sη).

5. For each transition t ∈ T and each place s ∈ S \ {sη}, the annotation
on the arc from s to t is a multiset of vectors built from variables and
data values, and the annotation on the arc from t to s is a multiset of
vectors built from expressions involving data variables and data values
as well as elements from Πt ∪ {p1, . . . , pm}.

6. For each transition t ∈ T , Λ(t) is a computable Boolean expression,
called the guard of t, build from the variables occurring in the anno-
tations of arcs adjacent to t and data values. The usage of pids is
restricted to comparisons of the elements from Πt ∪ {p1, . . . , pk} using
the operators from Ωpid .

5This is not a restriction in practice since any desired marking can be obtained by
initially �ring a special transition which inserts the required tokens into the places of the
net N .

6Note that the �rst row 〈p1, c1 + n1〉, . . . , 〈pm, cm + nm〉 corresponds to those pids
p1, . . . , pk which remain active after the �ring of t, and the remaining rows correspond to
newly created pids. If nj = 0 then the whole row 〈pj .(cj + 1), 0〉, . . . , 〈pj .(cj + nj), 0〉 is
absent, i.e., no child pids were created for pj .

149

Notice that the transitions of such nets manipulate the pids in a con-
trolled way. In particular, they may create new pids only from existing and
active ones, and only following a precise creation scheme (ensured by the
connection to the place sη).

A binding β of a transition t ∈ T is a mapping from the variables
occurring in the guard of t and the annotations of arcs adjacent to t to
concrete values of the corresponding types. We use β(e) to denote the result
of evaluating an expression e under the binding β. Then, t is enabled at a
marking M if there is a binding β such that the following hold:

• for all s ∈ S, β(Λ(s, t)) ≤ M(s), i.e., there are enough tokens in the
input places of t;

• β(Λ(t, s)) is a multiset over Λ(s), i.e., the types of the output places
of t are respected; and

• β(Λ(t)) evaluates to true.

Such an enabled transition t may �re producing a new marking M ′

such that, for all s ∈ S, we have:

M ′(s) df
= M(s)− β(Λ(s, t)) + β(Λ(t, s)) .

We denote this by M [t, β〉M ′. Then a marking M is reachable if it can be
derived from M0 by �ring a �nite sequence of transitions.

In [11] we also introduced a class of high-level Petri nets aimed at
modelling systems with dynamic process creation. However, the syntactic
rules there were over-complicated and so it was one of our objectives to
simplify the constraints imposed on suitable Petri nets. The resulting class
supports much more re�ned way of modelling systems.

We will now present results validating our claim that the just de�ned
class of high-level Petri nets satis�es Assumptions 1-3. To start with, in
this particular case, states correspond to reachable markings of N . For each
such a marking M , the corresponding state qM

df
= (σM , ηM) is given by:

σM
df
= {(s,M(s)) | s ∈ S}

ηM
df
= {π 7→ k | 〈π, k〉 ∈M(sη)} ,

and the generated ct-con�guration is ctcM
df
= (G,H), where H = ηM and

G is the set of all pids occurring in the marking M . Note that ηM is a
well de�ned function since no pid occurs more than once in sη which can be

150

shown in a similar way as Theorem 2 (see the Appendix). As a result, qM
and ctcM are also well de�ned.

We may now observe that Assumption 1 is guaranteed by the restric-
tions on the form of annotations on the arcs adjacent to a single transition
(in particular items 4 and 5 in the de�nition above). As to the remaining
two general assumptions, we have the following.

Theorem 2 (Petri net rendering of Assumption 2) LetM be a reach-

able marking of N . Then, ctcM is a ct-con�guration.

Let M and M ′ be reachable markings such that qM ∼h qM ′ . Then the
two markings are also h-equivalent, M ∼h M ′.

Theorem 3 (Petri net rendering of Assumption 3) LetM andM ′ be
h-equivalent reachable markings of N , and t be a transition such thatM [t, β〉M̃ .

Then M ′[t, h ◦ β〉M̃ ′, where M̃ ′ is a marking such that M̃ ∼
h̃
M̃ ′ for a bi-

jection h̃ coinciding with h on the intersection of their domains. Moreover,

the result still holds if Ωpid is restricted to any of its subsets which includes

pid equality.

Both theorems are proved in the Appendix (note that neither of these
proofs was previously published).

7 Comparison with other approaches

A variety of methods such as those in [7, 2, 9] (see, e.g., [16] for a recent
survey) address the state explosion problem by exploiting, in particular,
system symmetries in order to avoid searching parts of the state space which
are equivalent to those that have already been explored. Some methods, such
as [1, 6, 15], have been implemented in widely used veri�cation tools and
proved to be successful in the analysis of, e.g., communication protocols and
distributed systems. The method proposed in this paper actually focuses
on abstracting thread identi�ers, while symmetries are addressed indirectly.
So, in addition to reducing symmetric executions, it can also cope with
in�nite repetitive behaviours. Moreover, it should be noted that symmetry
reduction techniques rely on the computation of a canonical representation
of each state. It has been shown in [3] that this is as hard as checking graph
isomorphism. So, our method, while capturing symmetry reductions, is not
computationally more complex.

151

It is worth noting that our approach could be in principle combined with
any framework that o�ers symmetry reductions. To this end, one would ba-
sically need to encode explicitly into the states of the model the information
captured by the layered graphs we generate for checking states equivalence.
In particular, this would require to encode and maintain the relation between
active pids and the pids of their next siblings, as well as the comparisons
considered in Ω?

pid . This would greatly complicate the modelling but would
ensure that symmetry discovery is consistent with the constraints we require
in Assumptions 1-3.

When applied to Petri net markings, our approach can be more specif-
ically related to that developed in [9] (which, incidentally, covers those
in [7, 2]) where a general framework was proposed aimed at reduced state
space exploration through the utilisation of symmetries in data types. More
precisely, [9] de�nes three classes of primitive data types. Two of these, or-
dered (for which symmetries are not considered) and cyclic (which are �nite)
cannot lead to reductions based on pids. The remaining one, unordered, can
in principle be used for reduction even for in�nite domains. An interesting
aspect of the approach developed in [9] is that, in principle, it allows a de�-
nition of data types taking into account various comparisons between pids.
This could alleviate the encoding of the layer graphs within the model as
suggested above. Only the encoding and maintaining of the relation between
active pids and their next siblings would then be necessary.

Finally, any reduction method based on identifying equivalent Petri net
markings falls into the category of equivalence reduction as de�ned in [8].
This method requires an equivalence speci�cation to be consistent [8, def. 1],
i.e., preserved along the executions of a system, which in our case has been
split over Assumptions 1-3. However, it is important to note that [8] de�nes
a general notion but does not provide any help in �nding suitable equivalence
relations and proving their consistency with respect to state space reduction.
On the contrary, it is even stressed in [8] that this is a particularly di�cult
task, which, still according to [8], explains why equivalence reductions are
not often used and why less general symmetry reductions are preferred.

8 Concluding remarks

In this paper we presented an abstraction technique for generating reduced
state space representations of dynamic multi-threaded computing systems,
aimed speci�cally at alleviating problems resulting from dynamic process

152

creation. To make the new technique applicable to a wide range of di�erent
system models, we based it at the behavioural level on general labelled tran-
sition systems which have, in particular, to satisfy Assumptions 1�3. Such
an approach is practical as labelled transition systems of the this kind can
be obtained through introducing mild syntactic restrictions on the system
model generating them, as shown in Section 6. That is, the introduced class
of high-level Petri nets does generate labelled transition systems satisfying
the conditions required in �rst part of this paper. What is more, similar re-
strictions can be introduced for other system models which support explicit
thread creation and manipulation.

The proposed technique is based on an equivalence relation between
system states. It takes into account new process identi�ers which can be
derived from those present in the states being compared, in e�ect performing
a limited lookahead. We demonstrated that checking state equivalence can
be implemented in a very e�cient way by reusing well known algorithms for
graph isomorphism and their publicly available implementations.

Acknowledgements

We would like to thank the reviewers for their constructive comments. In
particular, we would like to thank the reviewer who encouraged us to evalu-
ate more closely the approaches developed in [8] and [9]. This research was
supported by the French Anr project Autochem, and the British projects
Rae&Epsrc Davac and Epsrc Verdad.

References

[1] D. Bosnacki, D. Dams, and L. Holenderski. Symmetric Spin. Interna-
tional Journal on Software Tools for Technology Transfer, 4(1):92�106,
2002.

[2] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. A Symbolic
Reachability Graph for Coloured Petri Nets. Theoretical Computer Sci-

ence, 176:39�65, 1997.

[3] E. M. Clarke, E. A. Emerson, S. Jha, and A. P. Sistla. Symmetry Re-
ductions in Model Checking. In Proceedings of the 10th International

Conference on Computer Aided Veri�cation (CAV'98), vol. 1427 of Lec-
ture Notes in Computer Science, pp. 147�158, 1998.

153

[4] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (Sub)Graph
Isomorphism Algorithm for Matching Large Graphs. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 26:1367�1372, 2004

[5] A.Hagberg, D. Schult, P. Swart. NetworkX, High Productivity Software
for Complex Networks. http://networkx.lanl.gov

[6] M. Hendriks, G. Behrmann, K.G. Larsen, P. Niebert, and F.W. Vaan-
drager. Adding Symmetry Reduction to UPPAAL. In Proceedings of

the First International Workshop on Formal Modeling and Analysis of

Timed Systems (FORMATS'03), vol. 2791 of Lecture Notes in Com-

puter Science, pp. 46�59, 2004.

[7] C. Norris Ip and David L. Dill. Better Veri�cation Through Symmetry.
Formal Methods in System Design, 9:41�75, 1996.

[8] J. B. Jørgensen and L. M. Kristensen. Veri�cation of Coloured Petri
Nets Using State Spaces with Equivalence Classes. LINCOM Studies in

Computer Science, 1:17�34, 2003.

[9] T. Junttila. On the Symmetry Reduction Method for Petri Nets and

Similar Formalisms. PhD Thesis, HUT, Espoo, Finland, 2003.

[10] V. Khomenko. Model Checking Based on Pre�xes of Petri Net Unfold-

ings. PhD Thesis, School of Computing Science, University of Newcas-
tle, 2003.

[11] H. Klaudel, M. Koutny, E. Pelz, and F. Pommereau. Towards E�cient
Veri�cation of Systems with Dynamic Process Creation. In Proceedings

of the 5th International Colloquium on Theoretical Aspects of Comput-

ing (ICTAC'08), vol. 5160 of Lecture Notes in Computer Science, pp.
186�200, 2008.

[12] H. Klaudel, M. Koutny, E. Pelz, and F. Pommereau. An Approach to
State Space Reduction for Systems with Dynamic Process Creation.
In Proceedings of the 24th International Symposium on Computer and

Information Sciences (ISCIS'09), pp. 543�548, 2009.

[13] K. Jensen and L.M. Kristensen Coloured Petri Nets: Modelling and

Validation of Concurrent Systems. Springer, 2009.

[14] B. D. McKay. Practical Graph Isomorphism. Congressus Numerantium,
30: 45�87, 1981.

154

[15] K. McMillan. Symbolic Model Checking. Kluwer Academic, 1993.

[16] A. Miller, A. Donaldson, and M. Calder. Symmetry in Temporal Logic
Model Checking. ACM Computer Surveys, 38(3):Article 8, 2006.

[17] W. Stein. Sage Mathematics Software. The Sage Group (2007)
http://www.sagemath.org

A Additional results and proofs of Theorems 2 and 3

In what follows, the function H occurring in a ct-con�guration ctc = (G,H)
is often treated as a set of pairs. We �rst observe that being a ct-con�guration
is una�ected by pid deletion.

Proposition 1 Let (G,H) be a ct-con�guration. If dom(H) ⊆ G′ ⊆ G and

H ′ ⊆ H, then both (G′, H) and (G,H ′) are ct-con�gurations.

Proof: Follows directly from the de�nition of a ct-con�guration. 2

The next result captures the change of a ct-con�guration ctc = (G,H)
after the spawning of a single new thread. The idea is that we �rst select
π in the domain of H and then replace the unique (π, i) in H by (π, i+ 1),
and respectively add π.(i+ 1) and (π.(i+ 1), 0) to G and H, leading to:

ctcπ
df
=
(
G ∪ {π.(i+ 1)} , H \ {(π, i)} ∪ {(π, i+ 1), (π.(i+ 1), 0) }

)
.

In the proofs below we use CTC1 and CTC2 to respectively refer to the
�rst and second part of the de�nition of a ct-con�guration.

Proposition 2 The ctcπ above is a ct-con�guration. Moreover, π.(i+ 1) /∈
G.

Proof: Let ctcπ = (G′, H ′). We �rst observe that, by CTC2 for ctc,

π.(i+ 1).τ /∈ G, for all τ . (∗)

Hence the second part of the result holds. Moreover, by (∗) and CTC1 for
ctc together with dom(H ′) = dom(H) ∪ {π.(i+ 1)}, we obtain that H ′ is a
function.

It is clear that ctcπ satis�es CTC1 since ctc satis�es CTC1 and we have
G′ = G ∪ {π.(i+ 1)} and dom(H ′) = dom(H) ∪ {π.(i+ 1)}.

155

To show that CTC2 is also satis�ed, we proceed as follows. Since ctc
satis�es CTC2, if the same is not true of ctcπ, then at least one of the
following three cases must hold.

Case 1: π.(i+ 1) = π′.k.τ and k > m, for some (π′,m) ∈ H \ {(π, i)}. If τ is
empty, then π = π′, producing a contradiction with the choice of (π′,m) and
H being a function. Hence τ = τ ′.n, and so we have that π = π′.k.τ ′ ∈ G,
producing a contradiction with CTC2 for ctc.

Case 2: k > i + 1, for some π.k.τ ∈ G. Then also k > i, producing a
contradiction with CTC2 for ctc.

Case 3: π.(i+ 1).τ ∈ G, for some τ . Then we immediately obtain a contra-
diction with (∗). 2

We can now prove that Assumption 1 holds for the class of Petri nets
introduced in this paper.

Sketch of the proof of Theorem 2: Follows from the fact that ctcM0 is
a ct-con�guration and from the de�nition of annotations on arcs adjacent to
a transition t. More precisely, they imply that if M [t, β〉M ′ then ctcM ′ can
be derived from ctcM by zero or more applications of Proposition 2 followed
by at most two applications of Proposition 1. 2

We now turn to the properties of equivalent markings. In what follows,
two ct-con�gurations such as in the de�nition of h-equivalent states will
also be called h-equivalent. Moreover, next(H) = {π.(i + 1) | (π, i) ∈ H},
for every ct-con�guration (G,H). We can then show that h-equivalence of
ct-con�gurations is preserved by coherent deletions of pids.

Proposition 3 Let (G,H) and (G′, H ′) be h-equivalent ct-con�gurations,
and dom(H) ⊆ G̃ ⊆ G and H̃ ⊆ H. Moreover, let Ĝ = h(G̃), and let Ĥ be

obtained from H ′ by deleting each (π, i) such that π /∈ h(dom(H̃)).

• (G̃,H) and (Ĝ,H ′) are h̃-equivalent ct-con�gurations, where h̃ is h
restricted to G̃ ∪ next(H).

• (G, H̃) and (G′, Ĥ) are h̃-equivalent ct-con�gurations, where h̃ is h
restricted to G ∪ next(H̃).

Proof: By Proposition 1, (G̃,H), (Ĝ,H ′), (G, H̃) and (G′, Ĥ) are all
ct-con�gurations. Then the result holds as in each case the new bijection is
a restriction of h. 2

156

Proposition 4 Let ctc = (G,H) and ctc′ = (G′, H ′) be h-equivalent ct-
con�gurations, and let (π, i) ∈ H and (π′, j) ∈ H ′ be such that π′ = h(π).
Then (G,H)π and (G′, H ′)π

′
are h̃-equivalent ct-con�gurations, for some

extension h̃ of h.

Proof: Let c̃tc = (G̃, H̃) = (G,H)π and ĉtc = (Ĝ, Ĥ) = (G′, H ′)π
′
. From

the assumptions we made and the fact that ctc and ctc′ are h-equivalent,
it follows that h(π.(i + 1)) = π′.(j + 1), G̃ = G] {π.(i + 1)} and Ĝ =
G′] {π′.(j + 1)} as well as:

next(H̃) = next(H) \ {π.(i+ 1)} ∪ {π.(i+ 2)}
next(Ĥ) = next(H ′) \ {π′.(j + 1)} ∪ {π′.(j + 2)} .

We then extend h to h̃ by adding h̃(π.(i + 2))
df
= π′.(j + 2). Then h̃ is a

bijection which follows from π.(i+ 2) /∈ G and π′.(j + 2) /∈ G′ which in turn
follows from CTC2 for ctc and ctc′, respectively. One can easily check that
c̃tc and ĉtc are h̃-equivalent ct-con�guration. 2

We can now prove that Assumption 3 holds for the class of Petri nets
introduced in this paper.

Sketch of the proof of Theorem 3: We �rst observe that t with the
binding h ◦ β is enabled at the marking M ′. In particular, the guard of t
evaluates to true (as in the case of β and M) since the pids can only be in-
volved in comparisons using the operators in Ωpid and the ct-con�gurations
ctcM and ctcM ′ are h-equivalent. We then observe that the existence of a
suitable bijection h̃ satisfying M̃ ∼

h̃
M̃ ′ comes from zero or more applica-

tions of Proposition 4 followed by at most two applications of Proposition 3.
2

157

