19,479 research outputs found

    Probing Fuzzballs with Particles, Waves and Strings

    Get PDF
    We probe D1D5 micro-state geometries with massless particles, waves and strings. To this end, we study geodetic motion, Klein-Gordon equation and string scattering in the resulting gravitational background. Due to the reduced rotational symmetry, even in the simple case of a circular fuzzball, the system cannot be integrated elementarily. Yet, for motion in the plane of the string profile or in the orthogonal plane to it, one can compute the deflection angle or the phase shift and identify the critical impact parameter, at which even a massless probe is captured by the fuzzball if its internal momentum is properly tuned. We find agreement among the three approaches, thus giving further support to the fuzzball proposal at the dynamical level.Comment: 35 pages. Extended and improved discussions on the integrability of the geodetic equations and on the critical impact parameter

    S-duality and the prepotential in N=2* theories (I): the ADE algebras

    Get PDF
    The prepotential of N=2* supersymmetric theories with unitary gauge groups in an Omega-background satisfies a modular anomaly equation that can be recursively solved order by order in an expansion for small mass. By requiring that S-duality acts on the prepotential as a Fourier transform we generalise this result to N=2* theories with gauge algebras of the D and E type and show that their prepotentials can be written in terms of quasi-modular forms of SL(2,Z). The results are checked against microscopic multi-instanton calculus based on localization for the A and D series and reproduce the known 1-instanton prepotential of the pure N=2 theories for any gauge group of ADE type. Our results can also be used to obtain the multi-instanton terms in the exceptional theories for which the microscopic instanton calculus and the ADHM construction are not available.Comment: 33 pages, LaTeX2e, added references, version to be published in JHE

    The effects of excitation waveforms and shaker moving mass on the measured modal characteristics of a 2- by 5-foot aluminum plate

    Get PDF
    Ground vibration tests were conducted to compare and to investigate the effects of five excitation waveforms and the shaker moving mass (equipment and armature used to attach the shaker to the structure) on the experimental modal characteristics of a 2- by 5-ft aluminum plate using fast Fourier transform techniques. The five types of excitation waveforms studied were sine dwell, random, impact, sine sweep, and impulsive sine. The results showed that the experimental modal frequencies for all types of excitation were within 3 percent, while the modal damping data exhibited greater scatter. The sets of mode shapes obtained by the five types of excitation were consistent. The results of the shaker moving mass investigation on the 2- by 5-ft aluminum plate showed that modal frequency decreases and modal damping remains relatively constant with an increase in shaker moving mass. The generalized mass of the structure appears to decrease with an increase in shaker moving mass. In addition, it was seen that having a shaker near a node line can reduce some of the effects of the added shaker moving mass on the frequencies and the damping

    A note on supersymmetric D-brane dynamics

    Get PDF
    We study the spin dependence of D-brane dynamics in the Green-Schwarz formalism of boundary states. In particular we show how to interpret insertion of supercharges on the boundary state as sources of non-universal spin effects in D-brane potentials. In this way we find for a generic (D)p-brane, potentials going like v4−n/r7−p+nv^{4-n}/r^{7-p+n} corresponding to interactions between the different components of the D-brane supermultiplet. From the eleven dimensional point of view, these potentials arise from the exchange of field strengths corresponding to the graviton and the three form, coupled non-minimally to the branes. We show how an annulus computation truncated to its massless contribution is enough to reproduce these next-to-leading effects, meaning in particular that the one-loop (M)atrix theory effective action should encode all the spin dependence of low-energy supergravity interactions.Comment: LaTex file, 12 pages, no figures, some corrections in last section and references added; version to appear in Physics Letters

    Even harmonic generation in isotropic media of dissociating homonuclear molecules

    Get PDF
    Isotropic gases irradiated by long pulses of intense IR light can generate very high harmonics of the incident field. It is generally accepted that, due to the symmetry of the generating medium, be it an atomic or an isotropic molecular gas, only odd harmonics of the driving field can be produced. Here we show how the interplay of electronic and nuclear dynamics can lead to a marked breakdown of this standard picture: a substantial part of the harmonic spectrum can consist of even rather than odd harmonics. We demonstrate the effect using ab-initio solutions of the time-dependent Schr\"odinger equation for HH2_2+^+ and its isotopes in full dimensionality. By means of a simple analytical model, we identify its physical origin, which is the appearance of a permanent dipole moment in dissociating homonuclear molecules, caused by light-induced localization of the electric charge during dissociation. The effect arises for sufficiently long laser pulses and the region of the spectrum where even harmonics are produced is controlled by pulse duration. Our results (i) show how the interplay of femtosecond nuclear and attosecond electronic dynamics, which affects the charge flow inside the dissociating molecule, is reflected in the nonlinear response, and (ii) force one to augment standard selection rules found in nonlinear optics textbooks by considering light-induced modifications of the medium during the generation process.Comment: 7 pages, 6 figure

    Stellar clusters in the inner Galaxy and their correlation with cold dust emission

    Full text link
    Stars are born within dense clumps of giant molecular clouds, constituting young stellar agglomerates known as embedded clusters, which only evolve into bound open clusters under special conditions. We statistically study all embedded clusters (ECs) and open clusters (OCs) known so far in the inner Galaxy, investigating particularly their interaction with the surrounding molecular environment and the differences in their evolution. We first compiled a merged list of 3904 clusters from optical and infrared clusters catalogs in the literature, including 75 new (mostly embedded) clusters discovered by us in the GLIMPSE survey. From this list, 695 clusters are within the Galactic range |l| < 60 deg and |b| < 1.5 deg covered by the ATLASGAL survey, which was used to search for correlations with submm dust continuum emission tracing dense molecular gas. We defined an evolutionary sequence of five morphological types: deeply embedded cluster (EC1), partially embedded cluster (EC2), emerging open cluster (OC0), OC still associated with a submm clump in the vicinity (OC1), and OC without correlation with ATLASGAL emission (OC2). Together with this process, we performed a thorough literature survey of these 695 clusters, compiling a considerable number of physical and observational properties in a catalog that is publicly available. We found that an OC defined observationally as OC0, OC1, or OC2 and confirmed as a real cluster is equivalent to the physical concept of OC (a bound exposed cluster) for ages in excess of ~16 Myr. Some observed OCs younger than this limit can actually be unbound associations. We found that our OC and EC samples are roughly complete up to ~1 kpc and ~1.8 kpc from the Sun, respectively, beyond which the completeness decays exponentially. Using available age estimates for a few ECs, we derived an upper limit of 3 Myr for the duration of the embedded phase... (Abridged)Comment: 39 pages, 9 figures. Accepted for publication in A&A on Sept 16, 2013. The catalog will be available at the CDS after official publication of the articl
    • …
    corecore