129 research outputs found

    Role of Sphingomyelin Synthase in Controlling the Antimicrobial Activity of Neutrophils against Cryptococcus neoformans

    Get PDF
    The key host cellular pathway(s) necessary to control the infection caused by inhalation of the environmental fungal pathogen Cryptococcus neoformans are still largely unknown. Here we have identified that the sphingolipid pathway in neutrophils is required for them to exert their killing activity on the fungus. In particular, using both pharmacological and genetic approaches, we show that inhibition of sphingomyelin synthase (SMS) activity profoundly impairs the killing ability of neutrophils by preventing the extracellular release of an antifungal factor(s). We next found that inhibition of protein kinase D (PKD), which controls vesicular sorting and secretion and is regulated by diacylglycerol (DAG) produced by SMS, totally blocks the extracellular killing activity of neutrophils against C. neoformans. The expression of SMS genes, SMS activity and the levels of the lipids regulated by SMS (namely sphingomyelin (SM) and DAG) are up-regulated during neutrophil differentiation. Finally, tissue imaging of lungs infected with C. neoformans using matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS), revealed that specific SM species are associated with neutrophil infiltration at the site of the infection. This study establishes a key role for SMS in the regulation of the killing activity of neutrophils against C. neoformans through a DAG-PKD dependent mechanism, and provides, for the first time, new insights into the protective role of host sphingolipids against a fungal infection

    Automated Analysis of Cryptococcal Macrophage Parasitism Using GFP-Tagged Cryptococci

    Get PDF
    The human fungal pathogens Cryptococcus neoformans and C. gattii cause life-threatening infections of the central nervous system. One of the major characteristics of cryptococcal disease is the ability of the pathogen to parasitise upon phagocytic immune effector cells, a phenomenon that correlates strongly with virulence in rodent models of infection. Despite the importance of phagocyte/Cryptococcus interactions to disease progression, current methods for assaying virulence in the acrophage system are both time consuming and low throughput. Here, we introduce the first stable and fully characterised GFP–expressing derivatives of two widely used cryptococcal strains: C. neoformans serotype A type strain H99 and C. gattii serotype B type strain R265. Both strains show unaltered responses to environmental and host stress conditions and no deficiency in virulence in the macrophage model system. In addition, we report the development of a method to effectively and rapidly investigate macrophage parasitism by flow cytometry, a technique that preserves the accuracy of current approaches but offers a four-fold improvement in speed

    Cause specific mortality in an Italian pool of asbestos workers cohorts

    Get PDF
    Background Asbestos is a known human carcinogen and is causally associated with malignant mesothelioma, lung, larynx and ovarian cancers.Methods Cancer risk was studied among a pool of formerly asbestos-exposed workers in Italy. Fifty-two Italian asbestos cohorts (asbestos-cement, rolling-stock, shipbuilding, and other) were pooled and their mortality follow-up was updated to 2018. Standardized mortality ratios (SMRs) were computed for major causes of death considering duration of exposure and time since first exposure (TSFE), using reference rates by region, age and calendar period.Results The study included 63,502 subjects (57,156 men and 6346 women): 40% who were alive, 58% who died (cause known for 92%), and 2% lost to follow-up. Mortality was increased for all causes (SMR: men = 1.04, 95% confidence interval [CI] 1.03-1.05; women = 1.15, 95% CI 1.11-1.18), all malignancies (SMR: men = 1.21, 95% CI 1.18-1.23; women = 1.29, 95% CI 1.22-1.37), pleural and peritoneal malignancies (men: SMR = 10.46, 95% CI 9.86-11.09 and 4.29, 95% CI 3.66-5.00; women: SMR = 27.13, 95% CI 23.29-31.42 and 7.51, 95% CI 5.52-9.98), lung (SMR: men = 1.28, 95% CI 1.24-1.32; women = 1.26, 95% CI 1.02-1.53), and ovarian cancer (SMR = 1.42, 95% CI 1.08-1.84). Pleural cancer mortality increased during the first 40 years of TSFE (latency), reaching a plateau thereafter.Conclusions Analyses by time-dependent variables showed that the risk for pleural neoplasms increased with latency and no longer increases at long TSFE, consistent with with asbestos clearance from the lungs. Peritoneal neoplasm risk increased over all observation time

    Cumulative asbestos exposure and mortality from asbestos related diseases in a pooled analysis of 21 asbestos cement cohorts in Italy

    Get PDF
    Background: Despite the available information on cancer risk, asbestos is used in large areas in the world, mostly in the production of asbestos cement. Moreover, questions are raised regarding the shape of the dose response relation, the relation with time since exposure and the association with neoplasms in various organs. We conducted a study on the relationship between cumulative asbestos exposure and mortality from asbestos related diseases in a large Italian pool of 21 cohorts of asbestos-cement workers with protracted exposure to both chrysotile and amphibole asbestos. Methods: The cohort included 13,076 workers, 81.9% men and 18.1% women, working in 21 Italian asbestos-cement factories, with over 40 years of observation. Exposure was estimated by plant and period, and weighted for the type of asbestos used. Data were analysed with consideration of cause of death, cumulative exposure and time since first exposure (TSFE), and by gender. SMRs were computed using reference rates by region, gender and calendar time. Poisson regression models including cubic splines were used to analyse the effect of cumulative exposure to asbestos and TSFE on mortality for asbestos-related diseases. 95% Confidence Intervals (CI) were computed according to the Poisson distribution. Results: Mortality was significantly increased for β€˜All Causes’ and β€˜All Malignant Neoplasm (MN)’, in both genders. Considering asbestos related diseases (ARDs), statistically significant excesses were observed for MN of peritoneum (SMR: men 14.19; women 15.14), pleura (SMR: 22.35 and 48.10), lung (SMR: 1.67 and 1.67), ovary (in the highest exposure class SMR 2.45), and asbestosis (SMR: 507 and 1023). Mortality for ARDs, in particular pleural and peritoneal malignancies, lung cancer, ovarian cancer and asbestosis increased monotonically with cumulative exposure. Pleural MN mortality increased progressively in the first 40 years of TSFE, then reached a plateau, while peritoneal MN showed a continuous increase. The trend of lung cancer SMRs also showed a flattening after 40 years of TSFE. Attributable proportions for pleural, peritoneal, and lung MN were respectively 96, 93 and 40%. Conclusions: Mortality for ARDs was associated with cumulative exposure to asbestos. Risk of death from pleural MN did not increase indefinitely with TSFE but eventually reached a plateau, consistently with reports from other recent studie

    Italian pool of asbestos workers cohorts: asbestos related mortality by industrial sector and cumulative exposure

    Get PDF
    Objective. Italy has been a large user of asbestos and asbestos containing materials until the 1992 ban. We present a pooled cohort study on long-term mortality in exposed workers. Methods. Pool of 43 Italian asbestos cohorts (asbestos cement, rolling stock, shipbuilding, glasswork, harbors, insulation and other industries). SMRs were computed by industrial sector for the 1970-2010 period, for the major causes, using reference rates by age, sex, region and calendar period. Results. The study included 51 801 subjects (5741 women): 55.9% alive, 42.6% died (cause known for 95%) and 1.5% lost to follow-up. Asbestos exposure was estimated at the plant and period levels. Asbestos related mortality was significantly increased. All industrial sectors showed increased mortality from pleural malignancies, and most als

    COVID-eVax, an electroporated DNA vaccine candidate encoding the SARS-CoV-2 RBD, elicits protective responses in animal models

    Get PDF
    The COVID-19 pandemic caused by SARS-CoV-2 has made the development of safe and effective vaccines a critical priority. To date, four vaccines have been approved by European and American authorities for preventing COVID-19, but the development of additional vaccine platforms with improved supply and logistics profiles remains a pressing need. Here we report the preclinical evaluation of a novel COVID-19 vaccine candidate based on the electroporation of engineered, synthetic cDNA encoding a viral antigen in the skeletal muscle. We constructed a set of prototype DNA vaccines expressing various forms of the SARS-CoV-2 spike (S) protein and assessed their immunogenicity in animal models. Among them, COVID-eVaxβ€”a DNA plasmid encoding a secreted monomeric form of SARS-CoV-2 S protein receptor-binding domain (RBD)β€”induced the most potent anti-SARS-CoV-2 neutralizing antibody responses (including against the current most common variants of concern) and a robust T cell response. Upon challenge with SARS-CoV-2, immunized K18-hACE2 transgenic mice showed reduced weight loss, improved pulmonary function, and lower viral replication in the lungs and brain. COVID-eVax conferred significant protection to ferrets upon SARS-CoV-2 challenge. In summary, this study identifies COVID-eVax as an ideal COVID-19 vaccine candidate suitable for clinical development. Accordingly, a combined phase I-II trial has recently started

    Probiotic Sonicates Selectively Induce Mucosal Immune Cells Apoptosis through Ceramide Generation via Neutral Sphingomyelinase

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License.-- et al.[Background]: Probiotics appear to be beneficial in inflammatory bowel disease, but their mechanism of action is incompletely understood. We investigated whether probiotic-derived sphingomyelinase mediates this beneficial effect. [Methodology/Principal Findings]: Neutral sphingomyelinase (NSMase) activity was measured in sonicates of the probiotic L. brevis (LB) and S. thermophilus (ST) and the non-probiotic E. coli (EC) and E. faecalis (EF). Lamina propria mononuclear cells (LPMC) were obtained from patients with Crohn's disease (CD) and Ulcerative Colitis (UC), and peripheral blood mononuclear cells (PBMC) from healthy volunteers, analysing LPMC and PBMC apoptosis susceptibility, reactive oxygen species (ROS) generation and JNK activation. In some experiments, sonicates were preincubated with GSH or GW4869, a specific NSMase inhibitor. NSMase activity of LB and ST was 10-fold that of EC and EF sonicates. LB and ST sonicates induced significantly more apoptosis of CD and UC than control LPMC, whereas EC and EF sonicates failed to induce apoptosis. Pre-stimulation with anti-CD3/CD28 induced a significant and time-dependent increase in LB-induced apoptosis of LPMC and PBMC. Exposure to LB sonicates resulted in JNK activation and ROS production by LPMC. NSMase activity of LB sonicates was completely abrogated by GW4869, causing a dose-dependent reduction of LB-induced apoptosis. LB and ST selectively induced immune cell apoptosis, an effect dependent on the degree of cell activation and mediated by bacterial NSMase. [Conclusions]: These results suggest that induction of immune cell apoptosis is a mechanism of action of some probiotics, and that NSMase-mediated ceramide generation contributes to the therapeutic effects of probiotics.The funding sources included grants from Centro de InvestigaciΓ³n BiomΓ©dica en Red de Enfermedades HepΓ‘ticas y Digestivas (CIBERehd), Ministerio de Ciencia e InnovaciΓ³n (SAF2005-00280 and SAF2008-03676 to MS, FIS2009-00056 to AM, SAF2009-11417 to JCF), FundaciΓ³n RamΓ³n Areces (to MS), the National Institutes of Health (DK30399 and DK50984 to CF) and the Research Center for Liver and Pancreatic Diseases funded by the United States National Institute for Alcohol Abuse and Alcoholism (P50 AA 11999 to JCF).Peer reviewe

    Cryptococcal Cell Morphology Affects Host Cell Interactions and Pathogenicity

    Get PDF
    Cryptococcus neoformans is a common life-threatening human fungal pathogen. The size of cryptococcal cells is typically 5 to 10 Β΅m. Cell enlargement was observed in vivo, producing cells up to 100 Β΅m. These morphological changes in cell size affected pathogenicity via reducing phagocytosis by host mononuclear cells, increasing resistance to oxidative and nitrosative stress, and correlated with reduced penetration of the central nervous system. Cell enlargement was stimulated by coinfection with strains of opposite mating type, and ste3aΞ” pheromone receptor mutant strains had reduced cell enlargement. Finally, analysis of DNA content in this novel cell type revealed that these enlarged cells were polyploid, uninucleate, and produced daughter cells in vivo. These results describe a novel mechanism by which C. neoformans evades host phagocytosis to allow survival of a subset of the population at early stages of infection. Thus, morphological changes play unique and specialized roles during infection

    Degradation of Host Sphingomyelin Is Essential for Leishmania Virulence

    Get PDF
    In eukaryotes, sphingolipids (SLs) are important membrane components and powerful signaling molecules. In Leishmania, the major group of SLs is inositol phosphorylceramide (IPC), which is common in yeast and Trypanosomatids but absent in mammals. In contrast, sphingomyelin is not synthesized by Leishmania but is abundant in mammals. In the promastigote stage in vitro, Leishmania use SL metabolism as a major pathway to produce ethanolamine (EtN), a metabolite essential for survival and differentiation from non-virulent procyclics to highly virulent metacyclics. To further probe SL metabolism, we identified a gene encoding a putative neutral sphingomyelinase (SMase) and/or IPC hydrolase (IPCase), designated ISCL (Inositol phosphoSphingolipid phospholipase C-Like). Despite the lack of sphingomyelin synthesis, L. major promastigotes exhibited a potent SMase activity which was abolished upon deletion of ISCL, and increased following over-expression by episomal complementation. ISCL-dependent activity with sphingomyelin was about 20 fold greater than that seen with IPC. Null mutants of ISCL (isclβˆ’) showed modest accumulation of IPC, but grew and differentiated normally in vitro. Interestingly, isclβˆ’ mutants did not induce lesion pathology in the susceptible BALB/c mice, yet persisted indefinitely at low levels at the site of infection. Notably, the acute virulence of isclβˆ’ was completely restored by the expression of ISCL or heterologous mammalian or fungal SMases, but not by fungal proteins exhibiting only IPCase activity. Together, these findings strongly suggest that degradation of host-derived sphingomyelin plays a pivotal role in the proliferation of Leishmania in mammalian hosts and the manifestation of acute disease pathology

    Chlamydia trachomatis Co-opts GBF1 and CERT to Acquire Host Sphingomyelin for Distinct Roles during Intracellular Development

    Get PDF
    The obligate intracellular pathogen Chlamydia trachomatis replicates within a membrane-bound inclusion that acquires host sphingomyelin (SM), a process that is essential for replication as well as inclusion biogenesis. Previous studies demonstrate that SM is acquired by a Brefeldin A (BFA)-sensitive vesicular trafficking pathway, although paradoxically, this pathway is dispensable for bacterial replication. This finding suggests that other lipid transport mechanisms are involved in the acquisition of host SM. In this work, we interrogated the role of specific components of BFA-sensitive and BFA-insensitive lipid trafficking pathways to define their contribution in SM acquisition during infection. We found that C. trachomatis hijacks components of both vesicular and non-vesicular lipid trafficking pathways for SM acquisition but that the SM obtained from these separate pathways is being utilized by the pathogen in different ways. We show that C. trachomatis selectively co-opts only one of the three known BFA targets, GBF1, a regulator of Arf1-dependent vesicular trafficking within the early secretory pathway for vesicle-mediated SM acquisition. The Arf1/GBF1-dependent pathway of SM acquisition is essential for inclusion membrane growth and stability but is not required for bacterial replication. In contrast, we show that C. trachomatis co-opts CERT, a lipid transfer protein that is a key component in non-vesicular ER to trans-Golgi trafficking of ceramide (the precursor for SM), for C. trachomatis replication. We demonstrate that C. trachomatis recruits CERT, its ER binding partner, VAP-A, and SM synthases, SMS1 and SMS2, to the inclusion and propose that these proteins establish an on-site SM biosynthetic factory at or near the inclusion. We hypothesize that SM acquired by CERT-dependent transport of ceramide and subsequent conversion to SM is necessary for C. trachomatis replication whereas SM acquired by the GBF1-dependent pathway is essential for inclusion growth and stability. Our results reveal a novel mechanism by which an intracellular pathogen redirects SM biosynthesis to its replicative niche
    • …
    corecore