338 research outputs found

    Structure of W3(OH) from Very High Spectral Resolution Observations of 5 Centimeter OH Masers

    Full text link
    Recent studies of methanol and ground-state OH masers at very high spectral resolution have shed new light on small-scale maser processes. The nearby source W3(OH), which contains numerous bright masers in several different transitions, provides an excellent laboratory for high spectral resolution techniques. We present a model of W3(OH) based on EVN observations of the rotationally-excited 6030 and 6035 MHz OH masers taken at 0.024 km/s spectral resolution. The 6.0 GHz masers are becoming brighter with time and show evidence for tangential proper motions. We confirm the existence of a region of magnetic field oriented toward the observer to the southeast and find another such region to the northeast in W3(OH), near the champagne flow. The 6.0 GHz masers trace the inner edge of a counterclockwise rotating torus feature. Masers at 6030 MHz are usually a factor of a few weaker than at 6035 MHz but trace the same material. Velocity gradients of nearby Zeeman components are much more closely correlated than in the ground state, likely due to the smaller spatial separation between Zeeman components. Hydroxyl maser peaks at very long baseline interferometric resolution appear to have structure on scales both smaller than that resolvable as well as on larger scales.Comment: 21 pages using emulateapj.cls including 16 figures and 2 tables, accepted to Ap

    Two New X-ray/Optical/Radio Supernova Remnants in M31

    Full text link
    We compare a deep (37 ks) Chandra ACIS-S image of the M31 bulge to Local Group Survey narrow-band optical data and Very Large Array (VLA) radio data of the same region. Our precisely registered images reveal two new optical shells with X-ray counterparts. These shells have sizes, [S II]/H-alpha flux ratios, and X-ray spectral properties typical of supernova remnants (SNRs) with ages of 94+3^{+3}_{-4} and 179+6^{+6}_{-9} kyr. Analysis of complementary VLA data reveals the radio counterparts, further confirming that they are SNRs. We discuss and compare the properties and morphologies of these SNRs at the different wavelengths.Comment: 18 pages, 5 figures, accepted for publication in Ap

    how many and who are affected?

    Get PDF
    Background: Nicotine dependence during adolescence increases the risk of continuing smoking into adulthood. The magnitude of nicotine dependence among adolescents in the European Union (EU) has not been established. We aimed to estimate the number of nicotine dependent 15-year-old adolescents in the EU, and identify high-risk groups. Methods: The number of nicotine dependent 15-year-olds in the EU was derived combining: (i) total number of 15-year-olds in the EU (2013 Eurostat), (ii) smoking prevalence among 15-year-olds (2013/2014 HBSC survey) and (iii) proportion of nicotine dependent 15-year-olds in six EU countries (2013 SILNE survey). Logistic regression analyses identified high-risk groups in the SILNE dataset. Results: We estimated 172 636 15-year-olds were moderately to highly nicotine dependent (3.2% of all 15 years old; 35.3% of daily smokers). In the total population, risk of nicotine dependence was higher in males, adolescents with poor academic achievement, and those with smoking parents or friends. Among daily smokers, only lower academic achievement and younger age of smoking onset were associated with nicotine dependence. Conclusion: According to our conservative estimates, more than 172 000 15-year-old EU adolescents were nicotine dependent in 2013. Prevention of smoking initiation, especially among adolescents with poor academic performance, is necessary to prevent a similar number of adolescents getting addicted to nicotine each consecutive year.publishersversionpublishe

    A Very High Spectral Resolution Study of Ground-State OH Masers in W3(OH)

    Get PDF
    We present VLBA observations of the ground-state hydroxyl masers in W3(OH) at 0.02 km s-1 spectral resolution. Over 250 masers are detected, including 56 Zeeman pairs. Lineshapes are predominantly Gaussian or combinations of several Gaussians, with normalized deviations typically of the same magnitude as in masers in other species. Typical FWHM maser linewidths are 0.15 to 0.38 km s-1 and are larger in the 1665 MHz transition than in the other three ground-state transitions. The satellite-line 1612 and 1720 MHz masers show no evidence of sigma^+/-2,3 components. The spatial positions of most masers are seen to vary across the line profile, with many spots showing clear, organized positional gradients. Equivalent line-of-sight velocity gradients in the plane of the sky typically range from 0.01 to 1 km s-1 AU-1 (i.e., positional gradients of 1 to 100 AU (km s-1)-1). Small velocity gradients in the 1667 MHz transition support theoretical predictions that 1667 MHz masers appear in regions with small velocity shifts along the amplification length. Deconvolved maser spot sizes appear to be larger in the line wings but do not support a spherical maser geometry

    Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetry A2

    Full text link
    We have measured the spin structure functions g2p and g2d and the virtual photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 1.0 < Q^2 < 30(GeV/c)^2 by scattering 38.8 GeV longitudinally polarized electrons from transversely polarized NH3 and 6LiD targets.The absolute value of A2 is significantly smaller than the sqrt{R} positivity limit over the measured range, while g2 is consistent with the twist-2 Wandzura-Wilczek calculation. We obtain results for the twist-3 reduced matrix elements d2p, d2d and d2n. The Burkhardt-Cottingham sum rule integral - int(g2(x)dx) is reported for the range 0.02 < x < 0.8.Comment: 12 pages, 4 figures, 1 tabl

    Measurements of the Q2Q^2-Dependence of the Proton and Neutron Spin Structure Functions g1p and g1n

    Get PDF
    The structure functions g1p and g1n have been measured over the range 0.014 < x < 0.9 and 1 < Q2 < 40 GeV2 using deep-inelastic scattering of 48 GeV longitudinally polarized electrons from polarized protons and deuterons. We find that the Q2 dependence of g1p (g1n) at fixed x is very similar to that of the spin-averaged structure function F1p (F1n). From a NLO QCD fit to all available data we find Γ1pΓ1n=0.176±0.003±0.007\Gamma_1^p - \Gamma_1^n =0.176 \pm 0.003 \pm 0.007 at Q2=5 GeV2, in agreement with the Bjorken sum rule prediction of 0.182 \pm 0.005.Comment: 17 pages, 3 figures. Submitted to Physics Letters

    Precision Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetries A2

    Get PDF
    We have measured the spin structure functions g2p and g2d and the virtual photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 0.7 < Q^2 < 20 GeV^2 by scattering 29.1 and 32.3 GeV longitudinally polarized electrons from transversely polarized NH3 and 6LiD targets. Our measured g2 approximately follows the twist-2 Wandzura-Wilczek calculation. The twist-3 reduced matrix elements d2p and d2n are less than two standard deviations from zero. The data are inconsistent with the Burkhardt-Cottingham sum rule if there is no pathological behavior as x->0. The Efremov-Leader-Teryaev integral is consistent with zero within our measured kinematic range. The absolute value of A2 is significantly smaller than the sqrt[R(1+A1)/2] limit.Comment: 12 pages, 4 figures, 2 table

    Precision Determination of the Neutron Spin Structure Function g1n

    Full text link
    We report on a precision measurement of the neutron spin structure function g1ng^n_1 using deep inelastic scattering of polarized electrons by polarized ^3He. For the kinematic range 0.014<x<0.7 and 1 (GeV/c)^2< Q^2< 17 (GeV/c)^2, we obtain 0.0140.7g1n(x)dx=0.036±0.004(stat)±0.005(syst)\int^{0.7}_{0.014} g^n_1(x)dx = -0.036 \pm 0.004 (stat) \pm 0.005 (syst) at an average Q2=5(GeV/c)2Q^2=5 (GeV/c)^2. We find relatively large negative values for g1ng^n_1 at low xx. The results call into question the usual Regge theory method for extrapolating to x=0 to find the full neutron integral 01g1n(x)dx\int^1_0 g^n_1(x)dx, needed for testing quark-parton model and QCD sum rules.Comment: 5 pages, 3 figures To be published in Phys. Rev. Let
    corecore