901 research outputs found

    Interpreting the evidence on life cycle skill formation

    Get PDF
    This paper presents economic models of child development that capture the essence of recent findings from the empirical literature on skill formation. The goal of this essay is to provide a theoretical framework for interpreting the evidence from a vast empirical literature, for guiding the next generation of empirical studies, and for formulating policy. Central to our analysis is the concept that childhood has more than one stage. We formalize the concepts of self-productivity and complementarity of human capital investments and use them to explain the evidence on skill formation. Together, they explain why skill begets skill through a multiplier process. Skill formation is a life cycle process. It starts in the womb and goes on throughout life. Families play a role in this process that is far more important than the role of schools. There are multiple skills and multiple abilities that are important for adult success. Abilities are both inherited and created, and the traditional debate about nature versus nurture is scientiÞcally obsolete. Human capital investment exhibits both self-productivity and complementarity. Skill attainment at one stage of the life cycle raises skill attainment at later stages of the life cycle (self-productivity). Early investment facilitates the productivity of later investment (complementarity). Early investments are not productive if they are not followed up by later investments (another aspect of complementarity). This complementarity explains why there is no equity-efficiency trade-off for early investment. The returns to investing early in the life cycle are high. Remediation of inadequate early investments is difficult and very costly as a consequence of both self-productivity and complementarity

    A Frequency-Controlled Magnetic Vortex Memory

    Get PDF
    Using the ultra low damping NiMnSb half-Heusler alloy patterned into vortex-state magnetic nano-dots, we demonstrate a new concept of non-volatile memory controlled by the frequency. A perpendicular bias magnetic field is used to split the frequency of the vortex core gyrotropic rotation into two distinct frequencies, depending on the sign of the vortex core polarity p=±1p=\pm1 inside the dot. A magnetic resonance force microscope and microwave pulses applied at one of these two resonant frequencies allow for local and deterministic addressing of binary information (core polarity)

    Local Fuel Starvation Degradation of an Automotive PEMFC Full Size Stack

    Get PDF
    Special Issue: 23rd EFCF “Low‐Temperature Fuel Cells, Electrolyzers, H2‐Processing Forum” (EFCF2019

    Bistability of vortex core dynamics in a single perpendicularly magnetized nano-disk

    Get PDF
    Microwave spectroscopy of individual vortex-state magnetic nano-disks in a perpendicular bias magnetic field, HH, is performed using a magnetic resonance force microscope (MRFM). It reveals the splitting induced by HH on the gyrotropic frequency of the vortex core rotation related to the existence of the two stable polarities of the core. This splitting enables spectroscopic detection of the core polarity. The bistability extends up to a large negative (antiparallel to the core) value of the bias magnetic field HrH_r, at which the core polarity is reversed. The difference between the frequencies of the two stable rotational modes corresponding to each core polarity is proportional to HH and to the ratio of the disk thickness to its radius. Simple analytic theory in combination with micromagnetic simulations give quantitative description of the observed bistable dynamics.Comment: 4 pages, 3 figures, 1 table, 16 references. Submitted to Physical Review Letters on December 19th, 200

    Automatic Optic Nerve Measurement: A New Tool to Standardize Optic Nerve Assessment in Ultrasound B-Mode Images

    Get PDF
    Transorbital sonography provides reliable information about the estimation of intra-cranial pressure by measuring the optic nerve sheath diameter (ONSD), whereas the optic nerve (ON) diameter (OND) may reveal ON atrophy in patients with multiple sclerosis. Here, an AUTomatic Optic Nerve MeAsurement (AUTONoMA) system for OND and ONSD assessment in ultrasound B-mode images based on deformable models is presented. The automated measurements were compared with manual ones obtained by two operators, with no significant differences. AUTONoMA correctly segmented the ON and its sheath in 71 out of 75 images. The mean error compared with the expert operator was 0.06 ± 0.52 mm and 0.06 ± 0.35 mm for the ONSD and OND, respectively. The agreement between operators and AUTONoMA was good and a positive correlation was found between the readers and the algorithm with errors comparable with the inter-operator variability. The AUTONoMA system may allow for standardization of OND and ONSD measurements, reducing manual evaluation variability

    Transorbital Sonography in Acute Optic Neuritis: A Case-Control Study

    Get PDF
    BACKGROUND AND PURPOSE: Acute unilateral optic neuritis is associated with a thickening of the retrobulbar portion of the optic nerve as revealed by transorbital sonography, but no comparison has been made between nerve sheath diameter and optic nerve diameter in patients with acute optic neuritis versus healthy controls. We evaluated optic nerve sheath diameter and optic nerve diameter in patients with acute optic neuritis and healthy controls and compared optic nerve sheath diameter and optic nerve diameter with visual-evoked potentials in patients. MATERIALS AND METHODS: A case-control study was performed in 2 centers. Twenty-one consecutive patients with onset of visual loss during the prior 10 days and established acute noncompressive unilateral optic neuritis were compared with 21 healthy controls, matched for sex and age (±5 years). Two experienced vascular sonographers performed the study by using B-mode transorbital sonography. Visual-evoked potentials were performed on the same day as the transorbital sonography and were evaluated by an expert neurophysiologist. Sonographers and the neurophysiologist were blinded to the status of the patient or control and to clinical information, including the side of the affected eye. RESULTS: The median optic nerve sheath diameter was thicker on the affected side (6.3 mm; interquartile range, 5.9–7.2 mm) compared with the nonaffected side (5.5 mm; interquartile range, 5.1–6.2 mm; P P P = not significant.). Both sides were thicker than those in controls (2.7 mm; interquartile range, 2.5–2.8 mm; P = .001 and .009). No correlation was found between optic nerve sheath diameter and optic nerve diameter and amplitude and latency of visual-evoked potentials in patients with optic neuritis. CONCLUSIONS: Transorbital sonography is a promising tool to support the clinical diagnosis of acute optic neuritis. Further studies are needed to define its specific role in the diagnosis and follow-up of optic neuritis
    • 

    corecore