407 research outputs found
A Continuity Theorem for Stinespring's Dilation
We show a continuity theorem for Stinespring's dilation: two completely
positive maps between arbitrary C*-algebras are close in cb-norm iff we can
find corresponding dilations that are close in operator norm. The proof
establishes the equivalence of the cb-norm distance and the Bures distance for
completely positive maps. We briefly discuss applications to quantum
information theory.Comment: 18 pages, no figure
A dynamical model for quantum memory channels
A dynamical model for quantum channel is introduced which allows one to pass
continuously from the memoryless case to the case in which memory effects are
present. The quantum and classical communication rates of the model are defined
and explicit expression are provided in some limiting case. In this context we
introduce noise attenuation strategies where part of the signals are sacrificed
to modify the channel environment. The case of qubit channel with phase damping
noise is analyzed in details.Comment: 11 pages, 4 figures; minor correction adde
Ad- and desorption of Rb atoms on a gold nanofilm measured by surface plasmon polaritons
Hybrid quantum systems made of cold atoms near nanostructured surfaces are
expected to open up new opportunities for the construction of quantum sensors
and for quantum information. For the design of such tailored quantum systems
the interaction of alkali atoms with dielectric and metallic surfaces is
crucial and required to be understood in detail. Here, we present real-time
measurements of the adsorption and desorption of Rubidium atoms on gold
nanofilms. Surface plasmon polaritons (SPP) are excited at the gold surface and
detected in a phase sensitive way. From the temporal change of the SPP phase
the Rubidium coverage of the gold film is deduced with a sensitivity of better
than 0.3 % of a monolayer. By comparing the experimental data with a Langmuir
type adsorption model we obtain the thermal desorption rate and the sticking
probability. In addition, also laser-induced desorption is observed and
quantified.Comment: 9 pages, 6 figure
Exact Energy-Time Uncertainty Relation for Arrival Time by Absorption
We prove an uncertainty relation for energy and arrival time, where the
arrival of a particle at a detector is modeled by an absorbing term added to
the Hamiltonian. In this well-known scheme the probability for the particle's
arrival at the counter is identified with the loss of normalization for an
initial wave packet. Under the sole assumption that the absorbing term vanishes
on the initial wave function, we show that and , where denotes the mean
arrival time, and is the probability for the particle to be eventually
absorbed. Nearly minimal uncertainty can be achieved in a two-level system, and
we propose a trapped ion experiment to realize this situation.Comment: 8 pages, 2 figure
Long-range surface plasmon polariton excitation at the quantum level
We provide the quantum mechanical description of the excitation of long-range
surface plasmon polaritons (LRSPPs) on thin metallic strips. The excitation
process consists of an attenuated-reflection setup, where efficient
photon-to-LRSPP wavepacket-transfer is shown to be achievable. For calculating
the coupling, we derive the first quantization of LRSPPs in the polaritonic
regime. We study quantum statistics during propagation and characterize the
performance of photon-to-LRSPP quantum state transfer for single-photons,
photon-number states and photonic coherent superposition states.Comment: 9 pages, 6 figures, RevTeX4; Accepted versio
Gyrotropic impact upon negatively refracting surfaces
Surface wave propagation at the interface between different types of gyrotropic materials and an isotropic negatively refracting medium, in which the relative permittivity and relative permeability are, simultaneously, negative is investigated. A general approach is taken that embraces both gyroelectric and gyromagnetic materials, permitting the possibility of operating in either the low GHz, THz or the optical frequency regimes. The classical transverse Voigt configuration is adopted and a complete analysis of non-reciprocal surface wave dispersion is presented. The impact of the surface polariton modes upon the reflection of both plane waves and beams is discussed in terms of resonances and an example of the influence upon the Goos–Hänchen shift is given
Quantum Channels with Memory
We present a general model for quantum channels with memory, and show that it
is sufficiently general to encompass all causal automata: any quantum process
in which outputs up to some time t do not depend on inputs at times t' > t can
be decomposed into a concatenated memory channel. We then examine and present
different physical setups in which channels with memory may be operated for the
transfer of (private) classical and quantum information. These include setups
in which either the receiver or a malicious third party have control of the
initializing memory. We introduce classical and quantum channel capacities for
these settings, and give several examples to show that they may or may not
coincide. Entropic upper bounds on the various channel capacities are given.
For forgetful quantum channels, in which the effect of the initializing memory
dies out as time increases, coding theorems are presented to show that these
bounds may be saturated. Forgetful quantum channels are shown to be open and
dense in the set of quantum memory channels.Comment: 21 pages with 5 EPS figures. V2: Presentation clarified, references
adde
Surface plasmon-polariton study of the optical dielectric function of titanium nitride
This is an electronic version of an article published in Journal of Modern Optics, Vol. 45, Issue 10 (1998), pp. 2051–2062. JOURNAL OF MODERN OPTICS is available online at: http://www.informaworld.com/openurl?genre=article&issn=0950-0340&volume=45&issue=10&spage=2051This work presents the first detailed study of the optical dielectric function of optically thick TiNx films using grating coupling of radiation to surface plasmon-polaritons. Angle-dependent reflectivities are obtained in the wavelength range 500-875 nm and by comparison with grating modelling theory, we determine both the imaginary and the real parts of the dielectric function. This method provides an alternative to traditional characterization techniques (e.g. Kramers-Kronig analysis) that may require additional information about film thickness, or the sample's optical properties in other parts of the electromagnetic spectrum. We have fitted the determined dielectric function to a model based on a combination of interband absorptions and free-electron response evaluating both the plasma energy and the relaxation time
Coding Theorem for a Class of Quantum Channels with Long-Term Memory
In this paper we consider the transmission of classical information through a
class of quantum channels with long-term memory, which are given by convex
combinations of product channels. Hence, the memory of such channels is given
by a Markov chain which is aperiodic but not irreducible. We prove the coding
theorem and weak converse for this class of channels. The main techniques that
we employ, are a quantum version of Feinstein's Fundamental Lemma and a
generalization of Helstrom's Theorem.Comment: Some typos correcte
- …