28,328 research outputs found
A new approach to upscaling fracture network models while preserving geostatistical and geomechanical characteristics
A new approach to upscaling two-dimensional fracture network models is proposed for preserving geostatistical and geomechanical characteristics of a smaller-scale “source” fracture pattern. First, the scaling properties of an outcrop system are examined in terms of spatial organization, lengths, connectivity, and normal/shear displacements using fractal geometry and power law relations. The fracture pattern is observed to be nonfractal with the fractal dimension D ≈ 2, while its length distribution tends to follow a power law with the exponent 2 < a < 3. To introduce a realistic distribution of fracture aperture and shear displacement, a geomechanical model using the combined finite-discrete element method captures the response of a fractured rock sample with a domain size L = 2 m under in situ stresses. Next, a novel scheme accommodating discrete-time random walks in recursive self-referencing lattices is developed to nucleate and propagate fractures together with their stress- and scale-dependent attributes into larger domains of up to 54 m × 54 m. The advantages of this approach include preserving the nonplanarity of natural cracks, capturing the existence of long fractures, retaining the realism of variable apertures, and respecting the stress dependency of displacement-length correlations. Hydraulic behavior of multiscale growth realizations is modeled by single-phase flow simulation, where distinct permeability scaling trends are observed for different geomechanical scenarios. A transition zone is identified where flow structure shifts from extremely channeled to distributed as the network scale increases. The results of this paper have implications for upscaling network characteristics for reservoir simulation
Precision CW laser automatic tracking system investigated
Precision laser tracker capable of tracking a low acceleration target to an accuracy of about 20 microradians rms is being constructed and tested. This laser tracking has the advantage of discriminating against other optical sources and the capability of simultaneously measuring range
Efficient DMFT-simulation of the Holstein-Hubbard Model
We present a method for solving impurity models with electron-phonon
coupling, which treats the phonons efficiently and without approximations. The
algorithm is applied to the Holstein-Hubbard model in the dynamical mean field
approximation, where it allows access to strong interactions, very low
temperatures and arbitrary fillings. We show that a renormalized
Migdal-Eliashberg theory provides a reasonlable description of the phonon
contribution to the electronic self energy in strongly doped systems, but fails
if the quasiparticle energy becomes of order of the phonon frequency.Comment: Published versio
Effective chiral restoration in the rho'-meson in lattice QCD
In simulations with dynamical quarks it has been established that the ground
state rho in the infrared is a strong mixture of the two chiral representations
(0,1)+(1,0) and (1/2,1/2)_b. Its angular momentum content is approximately the
3S1 partial wave which is consistent with the quark model. Effective chiral
restoration in an excited rho-meson would require that in the infrared this
meson couples predominantly to one of the two representations. The variational
method allows one to study the mixing of interpolators with different chiral
transformation properties in the non-perturbatively determined excited state at
different resolution scales. We present results for the first excited state of
the rho-meson using simulations with n_f=2 dynamical quarks. We point out, that
in the infrared a leading contribution to rho'= rho(1450) comes from
(1/2,1/2)_b, in contrast to the rho. Its approximate chiral partner would be a
h_1(1380) state. The rho' wave function contains a significant contribution of
the 3D1 wave which is not consistent with the quark model prediction.Comment: 4 pp, a few short remarks have been added, a reference updated. To
appear in PR
Diffusion in simple fluids
Computed self diffusion coefficients for the Lennard-Jones and hard sphere fluids are related by
Dej = DNs(aB) exp (--e/2kB T)
where σB=σLJ(2/[1+ii(1+2kBT/ε)])1/6, the effective hard sphere diameter, is the (average) distance of closest approach in collisions between molecules which interact with the positive part of the LJ potential, and the Arrhenius term reflects the influence of the negative part. σLJ and ε are the size and well depth parameters. Measured diffusion coefficients of the halomethane liquids are reproduced by the equation over wide ranges of temperature and density and do not reveal any influence of the inelastic effects associated with molecular anisotropy
SEPIA: Search for Proofs Using Inferred Automata
This paper describes SEPIA, a tool for automated proof generation in Coq.
SEPIA combines model inference with interactive theorem proving. Existing proof
corpora are modelled using state-based models inferred from tactic sequences.
These can then be traversed automatically to identify proofs. The SEPIA system
is described and its performance evaluated on three Coq datasets. Our results
show that SEPIA provides a useful complement to existing automated tactics in
Coq.Comment: To appear at 25th International Conference on Automated Deductio
Low-energy models for correlated materials: bandwidth renormalization from Coulombic screening
We provide a prescription for constructing Hamiltonians representing the low
energy physics of correlated electron materials with dynamically screened
Coulomb interactions. The key feature is a renormalization of the hopping and
hybridization parameters by the processes that lead to the dynamical screening.
The renormalization is shown to be non-negligible for various classes of
correlated electron materials. The bandwidth reduction effect is necessary for
connecting models to materials behavior and for making quantitative predictions
for low-energy properties of solids.Comment: 4 pages, 2 figure
Signatures of Dark Matter Scattering Inelastically Off Nuclei
Direct dark matter detection focuses on elastic scattering of dark matter
particles off nuclei. In this study, we explore inelastic scattering where the
nucleus is excited to a low-lying state of 10-100 keV, with subsequent prompt
de-excitation. We calculate the inelastic structure factors for the odd-mass
xenon isotopes based on state-of-the-art large-scale shell-model calculations
with chiral effective field theory WIMP-nucleon currents. For these cases, we
find that the inelastic channel is comparable to or can dominate the elastic
channel for momentum transfers around 150 MeV. We calculate the inelastic
recoil spectra in the standard halo model, compare these to the elastic case,
and discuss the expected signatures in a xenon detector, along with
implications for existing and future experiments. The combined information from
elastic and inelastic scattering will allow to determine the dominant
interaction channel within one experiment. In addition, the two channels probe
different regions of the dark matter velocity distribution and can provide
insight into the dark halo structure. The allowed recoil energy domain and the
recoil energy at which the integrated inelastic rates start to dominate the
elastic channel depend on the mass of the dark matter particle, thus providing
a potential handle to constrain its mass.Comment: 9 pages, 7 figures. Matches resubmitted version to Phys. Rev. D. One
figure added; supplemental material (fits to the structure functions) added
as an Appendi
Design of a scanning tunneling microscope for electrochemical applications
A design for a scanning tunneling microscope that is well suited for electrochemical investigations is presented. The construction of the microscope ensures that only the tunneling tip and the sample participate in electrochemical reactions. The design also allows rapid replacement of the tip or sample, and enables facile introduction of auxiliary electrodes for use in electrochemical experiments. The microscope utilizes stepper motor driven approach mechanics in order to achieve fully remote operation and to allow reproducible coarse control of tip/sample spacings for electrochemical experiments. Highly ordered pyrolytic graphite images at atomic resolution in air and aqueous solutions can be obtained with this microscope
Coherent optical transfer of Feshbach molecules to a lower vibrational state
Using the technique of stimulated Raman adiabatic passage (STIRAP) we have
coherently transferred ultracold 87Rb2 Feshbach molecules into a more deeply
bound vibrational quantum level. Our measurements indicate a high transfer
efficiency of up to 87%. As the molecules are held in an optical lattice with
not more than a single molecule per lattice site, inelastic collisions between
the molecules are suppressed and we observe long molecular lifetimes of about 1
s. Using STIRAP we have created quantum superpositions of the two molecular
states and tested their coherence interferometrically. These results represent
an important step towards Bose-Einstein condensation (BEC) of molecules in the
vibrational ground state.Comment: 4 pages, 5 figure
- …