31,059 research outputs found
Stochastic stability of viscoelastic systems under Gaussian and Poisson white noise excitations
As the use of viscoelastic materials becomes increasingly popular, stability of viscoelastic structures under random loads becomes increasingly important. This paper aims at studying the asymptotic stability of viscoelastic systems under Gaussian and Poisson white noise excitations with Lyapunov functions. The viscoelastic force is approximated as equivalent stiffness and damping terms. A stochastic differential equation is set up to represent randomly excited viscoelastic systems, from which a Lyapunov function is determined by intuition. The time derivative of this Lyapunov function is then obtained by stochastic averaging. Approximate conditions are derived for asymptotic Lyapunov stability with probability one of the viscoelastic system. Validity and utility of this approach are illustrated by a Duffing-type oscillator possessing viscoelastic forces, and the influence of different parameters on the stability region is delineated
Fermionic concurrence in the extended Hubbard dimer
In this paper, we introduce and study the fermionic concurrence in a two-site
extended Hubbard model. Its behaviors both at the ground state and finite
temperatures as function of Coulomb interaction (on-site) and
(nearest-neighbor) are obtained analytically and numerically. We also
investigate the change of the concurrence under a nonuniform field, including
local potential and magnetic field, and find that the concurrence can be
modulated by these fields.Comment: 5 pages, 7 figure
Fast Monte Carlo Simulation for Patient-specific CT/CBCT Imaging Dose Calculation
Recently, X-ray imaging dose from computed tomography (CT) or cone beam CT
(CBCT) scans has become a serious concern. Patient-specific imaging dose
calculation has been proposed for the purpose of dose management. While Monte
Carlo (MC) dose calculation can be quite accurate for this purpose, it suffers
from low computational efficiency. In response to this problem, we have
successfully developed a MC dose calculation package, gCTD, on GPU architecture
under the NVIDIA CUDA platform for fast and accurate estimation of the x-ray
imaging dose received by a patient during a CT or CBCT scan. Techniques have
been developed particularly for the GPU architecture to achieve high
computational efficiency. Dose calculations using CBCT scanning geometry in a
homogeneous water phantom and a heterogeneous Zubal head phantom have shown
good agreement between gCTD and EGSnrc, indicating the accuracy of our code. In
terms of improved efficiency, it is found that gCTD attains a speed-up of ~400
times in the homogeneous water phantom and ~76.6 times in the Zubal phantom
compared to EGSnrc. As for absolute computation time, imaging dose calculation
for the Zubal phantom can be accomplished in ~17 sec with the average relative
standard deviation of 0.4%. Though our gCTD code has been developed and tested
in the context of CBCT scans, with simple modification of geometry it can be
used for assessing imaging dose in CT scans as well.Comment: 18 pages, 7 figures, and 1 tabl
Efficient electronic entanglement concentration assisted with single mobile electron
We present an efficient entanglement concentration protocol (ECP) for mobile
electrons with charge detection. This protocol is quite different from other
ECPs for one can obtain a maximally entangled pair from a pair of
less-entangled state and a single mobile electron with a certain probability.
With the help of charge detection, it can be repeated to reach a higher success
probability. It also does not need to know the coefficient of the original
less-entangled states. All these advantages may make this protocol useful in
current distributed quantum information processing.Comment: 6pages, 3figure
Neutrino masses, leptogenesis and dark matter in hybrid seesaw
We suggest a hybrid seesaw model where relatively ``light''right-handed
neutrinos give no contribution to the neutrino mass matrix due to a special
symmetry. This allows their Yukawa couplings to the standard model particles to
be relatively strong, so that the standard model Higgs boson can decay
dominantly to a left and a right-handed neutrino, leaving another stable
right-handed neutrino as cold dark matter. In our model neutrino masses arise
via the type-II seesaw mechanism, the Higgs triplet scalars being also
responsible for the generation of the matter-antimatter asymmetry via the
leptogenesis mechanism.Comment: 4 page
Stability of Mann and Ishikawa iterative processes with errors for a class of nonlinear variational inclusions
Under the lack of the condition , some new convergence and stability theorems of Mann and Ishikawa iterative processes with errors for solutions to variational inclusions involving accretive mappings in real
reflexive Banach spaces are established. The main results of this
paper extend and improve the corresponding results obtained by
Chang, Ding, Hassouni and Moudafi, Huang, Kazmi, Noor, Siddiqi and
Ansari and Zeng
Spectral Analyses of the Nearest Persistent Ultraluminous X-Ray Source M33 X-8
We provide a detailed analysis of 12 XMM observations of the nearest
persistent extragalactic ultraluminous X-ray source (ULX), M33 X-8. No
significant spectral evolution is detected between the observations, therefore
we combine the individual observations to increase the signal-to-noise ratio
for spectral fitting. The combined spectra are best fitted by the
self-consistent p-free disk plus power-law component model with p =
0.571_{-0.030}^{+0.032}, kT_{in} = 1.38_{-0.08}^{+0.09} keV, and the flux ratio
of the p-free disk component to the power-law component being 0.63:0.37 in the
0.3 -- 10 keV band. The fitting indicates that the black hole in M33 X-8 is of
\sim 10 M_{\odot} and accretes at a super-Eddington rate (\sim 1.5 L_{Edd}),
and the phase of the accretion disk is close to a slim disk (p = 0.5). We
report, for the first time, that an extra power-law component is required in
addition to the p-free disk model for ULXs. In super-Eddington cases, the
power-law component may possibly result from the optically thin inner region f
the disk or a comptonized corona similar to that of a standard thin disk.Comment: 11 pages, 1 table, 2 figures, accepted by PAS
Dislocation nucleation in shocked fcc solids: effects of temperature and preexisting voids
Quantitative behaviors of shock-induced dislocation nucleation are
investigated by means of molecular dynamics simulations on fcc Lennard-Jones
solids: a model Argon. In perfect crystals, it is found that Hugoniot elastic
limit (HEL) is a linearly decreasing function of temperature: from near-zero to
melting temperatures. In a defective crystal with a void, dislocations are
found to nucleate on the void surface. Also HEL drastically decreases to 15
percent of the perfect crystal when a void radius is 3.4 nanometer. The
decrease of HEL becomes larger as the void radius increases, but HEL becomes
insensitive to temperature.Comment: 4 pages. (ver.2) All figures have been revised. Two citations are
newly added. Numerical unit is unified in the context of solid argon. (ver.
3) A minor revision including new reference
- …