31,059 research outputs found

    Stochastic stability of viscoelastic systems under Gaussian and Poisson white noise excitations

    Get PDF
    As the use of viscoelastic materials becomes increasingly popular, stability of viscoelastic structures under random loads becomes increasingly important. This paper aims at studying the asymptotic stability of viscoelastic systems under Gaussian and Poisson white noise excitations with Lyapunov functions. The viscoelastic force is approximated as equivalent stiffness and damping terms. A stochastic differential equation is set up to represent randomly excited viscoelastic systems, from which a Lyapunov function is determined by intuition. The time derivative of this Lyapunov function is then obtained by stochastic averaging. Approximate conditions are derived for asymptotic Lyapunov stability with probability one of the viscoelastic system. Validity and utility of this approach are illustrated by a Duffing-type oscillator possessing viscoelastic forces, and the influence of different parameters on the stability region is delineated

    Fermionic concurrence in the extended Hubbard dimer

    Full text link
    In this paper, we introduce and study the fermionic concurrence in a two-site extended Hubbard model. Its behaviors both at the ground state and finite temperatures as function of Coulomb interaction UU (on-site) and VV (nearest-neighbor) are obtained analytically and numerically. We also investigate the change of the concurrence under a nonuniform field, including local potential and magnetic field, and find that the concurrence can be modulated by these fields.Comment: 5 pages, 7 figure

    Fast Monte Carlo Simulation for Patient-specific CT/CBCT Imaging Dose Calculation

    Full text link
    Recently, X-ray imaging dose from computed tomography (CT) or cone beam CT (CBCT) scans has become a serious concern. Patient-specific imaging dose calculation has been proposed for the purpose of dose management. While Monte Carlo (MC) dose calculation can be quite accurate for this purpose, it suffers from low computational efficiency. In response to this problem, we have successfully developed a MC dose calculation package, gCTD, on GPU architecture under the NVIDIA CUDA platform for fast and accurate estimation of the x-ray imaging dose received by a patient during a CT or CBCT scan. Techniques have been developed particularly for the GPU architecture to achieve high computational efficiency. Dose calculations using CBCT scanning geometry in a homogeneous water phantom and a heterogeneous Zubal head phantom have shown good agreement between gCTD and EGSnrc, indicating the accuracy of our code. In terms of improved efficiency, it is found that gCTD attains a speed-up of ~400 times in the homogeneous water phantom and ~76.6 times in the Zubal phantom compared to EGSnrc. As for absolute computation time, imaging dose calculation for the Zubal phantom can be accomplished in ~17 sec with the average relative standard deviation of 0.4%. Though our gCTD code has been developed and tested in the context of CBCT scans, with simple modification of geometry it can be used for assessing imaging dose in CT scans as well.Comment: 18 pages, 7 figures, and 1 tabl

    Efficient electronic entanglement concentration assisted with single mobile electron

    Full text link
    We present an efficient entanglement concentration protocol (ECP) for mobile electrons with charge detection. This protocol is quite different from other ECPs for one can obtain a maximally entangled pair from a pair of less-entangled state and a single mobile electron with a certain probability. With the help of charge detection, it can be repeated to reach a higher success probability. It also does not need to know the coefficient of the original less-entangled states. All these advantages may make this protocol useful in current distributed quantum information processing.Comment: 6pages, 3figure

    Neutrino masses, leptogenesis and dark matter in hybrid seesaw

    Get PDF
    We suggest a hybrid seesaw model where relatively ``light''right-handed neutrinos give no contribution to the neutrino mass matrix due to a special symmetry. This allows their Yukawa couplings to the standard model particles to be relatively strong, so that the standard model Higgs boson can decay dominantly to a left and a right-handed neutrino, leaving another stable right-handed neutrino as cold dark matter. In our model neutrino masses arise via the type-II seesaw mechanism, the Higgs triplet scalars being also responsible for the generation of the matter-antimatter asymmetry via the leptogenesis mechanism.Comment: 4 page

    Stability of Mann and Ishikawa iterative processes with errors for a class of nonlinear variational inclusions

    Get PDF
    Under the lack of the condition , some new convergence and stability theorems of Mann and Ishikawa iterative processes with errors for solutions to variational inclusions involving accretive mappings in real reflexive Banach spaces are established. The main results of this paper extend and improve the corresponding results obtained by Chang, Ding, Hassouni and Moudafi, Huang, Kazmi, Noor, Siddiqi and Ansari and Zeng

    Spectral Analyses of the Nearest Persistent Ultraluminous X-Ray Source M33 X-8

    Full text link
    We provide a detailed analysis of 12 XMM observations of the nearest persistent extragalactic ultraluminous X-ray source (ULX), M33 X-8. No significant spectral evolution is detected between the observations, therefore we combine the individual observations to increase the signal-to-noise ratio for spectral fitting. The combined spectra are best fitted by the self-consistent p-free disk plus power-law component model with p = 0.571_{-0.030}^{+0.032}, kT_{in} = 1.38_{-0.08}^{+0.09} keV, and the flux ratio of the p-free disk component to the power-law component being 0.63:0.37 in the 0.3 -- 10 keV band. The fitting indicates that the black hole in M33 X-8 is of \sim 10 M_{\odot} and accretes at a super-Eddington rate (\sim 1.5 L_{Edd}), and the phase of the accretion disk is close to a slim disk (p = 0.5). We report, for the first time, that an extra power-law component is required in addition to the p-free disk model for ULXs. In super-Eddington cases, the power-law component may possibly result from the optically thin inner region f the disk or a comptonized corona similar to that of a standard thin disk.Comment: 11 pages, 1 table, 2 figures, accepted by PAS

    Dislocation nucleation in shocked fcc solids: effects of temperature and preexisting voids

    Full text link
    Quantitative behaviors of shock-induced dislocation nucleation are investigated by means of molecular dynamics simulations on fcc Lennard-Jones solids: a model Argon. In perfect crystals, it is found that Hugoniot elastic limit (HEL) is a linearly decreasing function of temperature: from near-zero to melting temperatures. In a defective crystal with a void, dislocations are found to nucleate on the void surface. Also HEL drastically decreases to 15 percent of the perfect crystal when a void radius is 3.4 nanometer. The decrease of HEL becomes larger as the void radius increases, but HEL becomes insensitive to temperature.Comment: 4 pages. (ver.2) All figures have been revised. Two citations are newly added. Numerical unit is unified in the context of solid argon. (ver. 3) A minor revision including new reference
    • …
    corecore