376 research outputs found

    Hilbert space of wormholes

    Get PDF
    Wormhole boundary conditions for the Wheeler--DeWitt equation can be derived from the path integral formulation. It is proposed that the wormhole wave function must be square integrable in the maximal analytic extension of minisuperspace. Quantum wormholes can be invested with a Hilbert space structure, the inner product being naturally induced by the minisuperspace metric, in which the Wheeler--DeWitt operator is essentially self--adjoint. This provides us with a kind of probabilistic interpretation. In particular, giant wormholes will give extremely small contributions to any wormhole state. We also study the whole spectrum of the Wheeler--DeWitt operator and its role in the calculation of Green's functions and effective low energy interactions.Comment: 23 pages, 2 figures available upon request, REVTE

    Tsunami generation potential of a strike slip fault tip in the westernmost Mediterranean

    Get PDF
    Tsunamis are triggered by sudden seafloor displacements, and usually originate from seismic activity at faults. Nevertheless, strike-slip faults are usually disregarded as major triggers, as they are thought to be capable of generating only moderate seafloor deformation; accordingly, the tsunamigenic potential of the vertical throw at the tips of strike-slip faults is not thought to be significant. We found the active dextral NW–SE Averroes Fault in the central Alboran Sea (westernmost Mediterranean) has a historical vertical throw of up to 5.4 m at its northwestern tip corresponding to an earthquake of Mw 7.0. We modelled the tsunamigenic potential of this seafloor deformation by Tsunami-HySEA software using the Coulomb 3.3 code. Waves propagating on two main branches reach highly populated sectors of the Iberian coast with maximum arrival heights of 6 m within 21 and 35 min, which is too quick for current early-warning systems to operate successfully. These findings suggest that the tsunamigenic potential of strike-slip faults is more important than previously thought, and should be taken into account for the re-evaluation of tsunami early-warning systems.Versión del edito

    Martian Thermospheric Warming Associated With the Planet Encircling Dust Event of 2018

    Full text link
    We report the first observations of Martian thermospheric warming associated with the Planet Encircling Dust Event (PEDE) of 2018. We used dayglow observations made by the Imaging Ultraviolet Spectrograph instrument aboard the MAVEN spacecraft to retrieve the upper atmosphere temperature structures. Our analysis shows that the two‐cell meridional circulation pattern may be operating before the PEDE‐2018, which resulted in the cooling of lower/middle latitudes and warming at higher latitudes. However, after the onset, the existing circulation pattern gets dampened, resulted in a weaker latitudinal temperature structure. We saw that mean temperatures rose by about 20 K for the same local time after the onset of the dust storm. Our 3‐D Mars General Ionosphere Thermosphere Model calculations were able to reproduce the temperatures during the predust and early dust storm but failed to fully capture the temperature trend during the growth phase of the PEDE of 2018.Key PointsThe IUVS Observations show potential thermospheric warming associated with a global dust stormOur analysis shows active two-cell meridional circulation in the Martian thermosphere before the PEDE-2018Temperature observations show breakdown of nominal circulation during the dust stormPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154332/1/grl60064.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154332/2/grl60064_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154332/3/grl60064-sup-0002-Table_SI-S01.pd

    Limitations and usefulness of maximum daily shrinkage (MDS) and trunk growth rate (TGR) indicators in the irrigation scheduling of table olive trees

    Get PDF
    8 páginas.-- 7 figuras.-- 2 tablas.-- 32 referenciasMaximum daily trunk shrinkage (MDS) is the most popular indicator derived from trunk diameter fluctuations in most fruit trees and has been reported to be one of the earliest signs in the detection of water stress. However, in some species such as olive trees (. Olea europaea L.), MDS does not usually change in water stress conditions and trunk growth rate (TGR) has been suggested as better indicator. Most of this lack of sensitivity to drought conditions has been related to the relationship between the MDS and the water potential. This curvilinear relationship produces an uncertain zone were great variations of water potential do not imply any changes of MDS. The MDS signal, the ratio between measured MDS and estimated MDS with full irrigation, has been thought to be a better indicator than MDS, as it reduces the effect of the environment. On the other hand, though literature results suggest an effect of environment in TGR values, there are not clear relationship between this indicator and meteorological data. The aims of this work are, on one hand, to study the improvements of the baseline approach in the MDS signal and, on the other, study the influence of several meteorological variables in TGR. Three years' data from an irrigation experiment were used in to carry out the MDS analysis and six years' data for full irrigated trees during pit hardening period were used for TGR study. The comparison between MDS vs. water potential and MDS signal vs. water potential presented a great scattering in both relationships. Values of MDS signal between 1.1 and 1.4 were always identified with moderate water stress conditions (-1.4 to -2. MPa of water potential). However, since this MDS signal values are around the maximum in the curvilineal relationship with water potential, greater values of MDS signal (in the range of 1.1-1.4) were not necessary lower values of water potential. In addition, during low fruit load seasons MDS signal was not an accurate indicator. On the other hand, absolute values of several climatological measurements were not significantly related with TGR. Only daily increments explain part of the variations of TGR in full irrigated trees. In all the data analysed, the daily increment of average vapour pressure deficit was the best indicator related with TGR. The increase of this indicator decreased TGR values. In addition, the agreement between this indicator and TGR was affected for fruit load. Great yield seasons decrease the influence of VPD increment in TGR.This research was supported by the Spanish Ministerio de Ciencia e Innovación (MICINN), (AGL2010-19201-CO4-03). Thanks are due to J. Rodriguez and A. Montero for help with field measurements.Peer reviewe

    Temporal variability of waves at the proton cyclotron frequency upstream from Mars: Implications for Mars distant hydrogen exosphere

    Get PDF
    We report on the temporal variability of the occurrence of waves at the local proton cyclotron frequency upstream from the Martian bow shock from Mars Global Surveyor observations during the first aerobraking and science phasing orbit periods. Observations at high southern latitudes during minimum-to-mean solar activity show that the wave occurrence rate is significantly higher around perihelion/ southern summer solstice than around the spring and autumn equinoxes. A similar trend is observed in the hydrogen (H) exospheric density profiles over the Martian dayside and South Pole obtained from a model including UV thermospheric heating effects. In spite of the complexity in the ion pickup and plasma wave generation and evolution processes, these results support the idea that variations in the occurrence of waves could be used to study the temporal evolution of the distant Martian H corona and its coupling with the thermosphere at altitudes currently inaccessible to direct measurements.Fil: Bertucci, Cesar. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Romanelli, Norberto Julio. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Chaufray, J. Y.. LATMOS; FranciaFil: Gomez, Daniel Osvaldo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Mazelle, C.. IRAP; FranciaFil: Delva, M.. IWF-ÖAW; AustriaFil: Modolo, R.. LATMOS; FranciaFil: González Galindo, F.. Instituto de Astrofísica de Andalucía; EspañaFil: Brain, D. A.. University of Colorado Boulder; Estados Unido

    Effect of preharvest fruit bagging on fruit quality characteristics and incidence of fruit physiopathies in fully irrigated and water stressed pomegranated trees

    Get PDF
    BACKGROUND: This report studied the response of pomegranate fruit under full irrigation (FI) and water stress (WS) conditions to bagging with externally glossy single layer cellulosic paper bags open at the bottom from the end of fruit thinning to harvest time. RESULTS: Bagging decreased fruit size and the maturity index, and increased antioxidant activity in FI conditions. Moreover, fruit bagging substantially reduced the incidence of peel sunburn in both irrigation conditions. CONCLUSION: The delay in fruit growth and ripening as a result of pomegranate fruit bagging is outweighed by the very important commercial benefit in terms of the reduced incidence of peel sunburn and the increase in fruit antioxidant activity

    Circular strings, wormholes and minimum size

    Get PDF
    The quantization of circular strings in an anti-de Sitter background spacetime is performed, obtaining a discrete spectrum for the string mass. A comparison with a four-dimensional homogeneous and isotropic spacetime coupled to a conformal scalar field shows that the string radius and the scale factor have the same classical solutions and that the quantum theories of these two models are formally equivalent. However, the physically relevant observables of these two systems have different spectra, although they are related to each other by a specific one-to-one transformation. We finally obtain a discrete spectrum for the spacetime size of both systems, which presents a nonvanishing lower bound.Comment: 11 pages, LaTeX2e, minor change
    corecore