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[1] We report on the temporal variability of the occurrence of
waves at the local proton cyclotron frequency upstream from
the Martian bow shock from Mars Global Surveyor
observations during the first aerobraking and science phasing
orbit periods. Observations at high southern latitudes during
minimum-to-mean solar activity show that the wave
occurrence rate is significantly higher around perihelion/
southern summer solstice than around the spring and autumn
equinoxes. A similar trend is observed in the hydrogen (H)
exospheric density profiles over the Martian dayside and
South Pole obtained from a model including UV
thermospheric heating effects. In spite of the complexity in
the ion pickup and plasma wave generation and evolution
processes, these results support the idea that variations in the
occurrence of waves could be used to study the temporal
evolution of the distant Martian H corona and its coupling
with the thermosphere at altitudes currently inaccessible to
direct measurements. Citation: Bertucci, C., N. Romanelli,
J. Y. Chaufray, D. Gomez, C. Mazelle, M. Delva, R. Modolo,
F. González-Galindo, and D. A. Brain (2013), Temporal variability
of waves at the proton cyclotron frequency upstream from Mars:
Implications for Mars distant hydrogen exosphere, Geophys. Res.
Lett., 40, 3809–3813, doi:10.1002/grl.50709.

1. Introduction

[2] The absence of a significant intrinsic magnetic field at
Mars [Acuña et al., 1998] results in the direct interaction of
the magnetized Solar Wind (SW) with the planet’s atmo-
sphere. Mars’ interaction starts far beyond the bow shock,
where exospheric particles get ionized. Ionization processes
add a small amount of energy to the newborn ions with re-
spect to their neutral precursors. As the latter are considered
to be approximately at rest with respect to the planet, the

planetocentric velocities of newborn ions are also assumed
to be negligible. The newborn ion’s initial motion in the
SW frame consists in a gyration (ring component) around
the interplanetary magnetic field (IMF) and a parallel motion
(beam component) at the speed of its neutral precursor. The
speeds of the beam and ring components are V|| = VSW cos
(αVB) and V⊥ = VSW sin(αVB), respectively, where αVB, the
IMF cone angle, is the initial pitch angle of the newborn ion
and VSW is the velocity of the solar wind. The newborn ion dis-
tribution function arising from the pickup of a large number of
planetary ions is unstable due to the growth of plasma low fre-
quency waves [Wu andDavidson, 1972]. In particular, the occur-
rence of waves at the local cyclotron frequencyΩi = qiB/mi (B is
themagnetic field strength, and qi andmi are the charge andmass
of the ion, respectively) of a particular ion in the spacecraft (SC)
frame can be associated with the occurrence of the exospheric
pickup of ions with a specific mass-per-charge ratio. This
represents a potentially useful diagnostic tool to detect ionized
exospheric particles. An extensive discussion on the way in
which magnetic field wave measurements in the SC frame can
be associated with ion-ion instabilities arising from the pickup
of exospheric ions can be found in Romanelli et al. [2013].
[3] At Mars, Phobos-2 and Mars Global Surveyor (MGS)

magnetometers detected upstream waves at the local proton
cyclotron frequency Ωp [Russell et al., 1990, Brain et al.,
2002; Mazelle et al., 2004; Wei and Russell, 2006;
Romanelli et al., 2013]. All cases analyzed show a left-hand
polarization in the SC frame, and a quasi-parallel propagation
with respect to the IMF. Romanelli et al. [2013] analyzed the
properties of upstream waves at Ωp from a set of 372 MGS
orbits from 27 March 1998 to 24 September 1998, during
the science phasing orbits (SPO) phase. In particular, they
reported a strong drop in the occurrence of waves between
SPO1 (62% of the upstream observation time) and SPO2
(8%) subphases. They also noted no significant difference
in the directional properties of the IMF, αVB, or the IMF’s
convective electric field between the two subphases,
suggesting that the reduction in wave occurrence could be
due to temporal changes in the density of pickup protons.
[4] Theoretical and observational studies have confirmed

that the source of the pickup ions responsible for the occur-
rence of waves at Ωp at Mars is its hydrogen (H) exosphere
via ionization processes such as photoionization and charge
exchange [Barabash and Lundin, 2006; Dennerl et al.,
2006]. As in the case of Venus, the Martian (H) corona has
been hypothesized to contain a hot and a relatively cooler
thermal population [see, e.g., Johnson et al., 2008]. A recent
work by Chaufray et al. [2008] based on Mars Express
SPICAM observations suggests the presence of hot
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(T> 500K) and cold (T ~ 200K) populations. However, the
inferred hot H densities are not supported by theory, and the
two-population model is still poorly constrained by observa-
tions and model errors. Other works find inconclusive evi-
dence for a two-population model [Feldman et al., 2011]
and provide single profiles.
[5] So far, only models and indirect observations can predict

the structure of the exosphere at altitudes higher than a few
scale heights above the exobase. Most models use a
Chamberlain [1963] approach based on isothermal equilib-
rium. The vertical profile of the exospheric number density is
an exponential whose scale height is a function of the exobase
temperature and density, provided by models or observations.
Long-term (timescales larger than diurnal) variations in the
modeled exospheric densities come mainly from UV heating
of the thermosphere. As a result, solar cycle, annual, and sea-
sonal influences are expected. Simulations including a self-
consistent calculation of the global ion production [Modolo
et al., 2005] show that H escape is strongly dependent on the
EUV flux through its influence on exospheric densities.
[6] In this work, we investigate the conditions influencing the

presence or absence of upstreamwaves atΩp atMars reported in
previous works [Brain et al., 2002, Romanelli et al., 2013]. We
analyze MGS Magnetometer (MAG) observations during the
first aerobraking (AB1) and SPO phases, and we propose an
explanation based on the behavior of Mars distant H exosphere
with the support of an advanced exospheric model. Then, we
discuss the implications of these results in the understanding of
Mars H corona and its interaction with the solar wind.

2. Observations

[7] MGS MAG is a dual fluxgate magnetometer that pro-
vides fast (up to 32Hz), wide-range (±4, ±65,335 nT)

magnetic field measurements with an uncertainty of ±1 nT
due to spacecraft fields [Acuña et al., 2001]. Typical values
for the proton cyclotron frequency at Mars’ orbit (~ 0.05Hz)
justify the use of low-resolution MAG data (0.167–1.33Hz)
for which additional calibration is available.
[8] After Mars orbit insertion/capture (MOI) on 11

September 11 1998,MGSwas placed in highly elliptical orbits
with apoapses approximately located over the planet’s South
Pole. The evolution of MGS orbital period from MOI through
the entire premapping phase is described in Figure 6 from
Albee et al. [2001]. The aerobraking between MOI and April
1998 reduced the orbital period from 48 to 12 h; this phase is
known as AB1. SPO came in after AB1 and ended in
November 1998, when a second aerobraking (AB2) phase be-
gan. SPO orbits were 12 h long, and local times monotonically
varied between noon and 4AM. During AB1 and SPO, the
southern latitudes of the apoapses remained high.
[9] The upstream segments of every AB1 and SPO orbit up

to an altitude of 20,400 km (6 RM) were examined in the
search for waves at Ωp. The upper altitude limit was chosen
so as to ensure a homogeneous altitude coverage throughout
AB1 and SPO. Since these waves propagate almost parallel
to the IMF [Romanelli et al., 2013], the criterion used to iden-
tify them was based on the Fourier power spectral density
(PSD) of the transverse wave components with respect to
the IMF (δB⊥). The PSD of δB⊥ is the norm of a vector
whose components are the power spectral densities of the
components of δB⊥. The PSD is estimated over sliding
10min intervals to ensure a large number of wave periods
while allowing changes in the IMF. Consecutive intervals
have an overlap of 1min. Upstream portions are identified
using the points where MGS trajectory crosses Vignes et al.
[2000] bow shock fit, assuming an error of 10min on the up-
stream side along the spacecraft trajectory.
[10] We define that waves at Ωp are detected when the av-

erage PSD within the frequency band Ωp ± 0.015Hz
(0.015Hz being the error in Ωp associated with MAG’s un-
certainty) is larger than the average PSD for frequencies ω
> Ωp + 0.015Hz, plus its standard deviation (STD), multi-
plied by a constant k> 1. If fN is the Nyquist frequency
(0.167 and 0.667Hz for the two low frequency waves sam-
pling rates available), this is

PSD ωð Þh iΩpþ0:015Hz
Ω�0:015Hz

> k PSD ωð Þh if NΩpþ0:015HzþSTD PSD ωð Þf gf NΩpþ0:015Hz

n o

[11] The value of k is obtained by inspecting several orbits
with and without a clear spectral line atΩp. A value of k = 2.5
was found to be acceptable, as all selected orbits show signa-
tures at Ωp, and their number is adequate for statistical pur-
poses. Similar criteria have been applied on Venus Express
magnetometer measurements [Delva et al., 2011, and
references therein].
[12] Figure 1 shows an example of a positive detection of

waves at Ωp. The plot shows the PSD of δB⊥ as a function
of frequency ω for the interval 10:45:23–10:55:23 on
3April 1998. The spectrum shows a peak at Ωp = 0.125Hz
in the SC frame. The power contained in the 0.105–
0.135Hz band (black lines) is higher than the average power
contained at higher frequencies (gray dash line), plus its STD
(gray solid line).

Figure 1. PSD of δB⊥ for 10:45:23–10:55:23 on 3 April
1998 for a case of positive detection of waves at Ωp. Black
lines indicate the frequency range corresponding to the error
in the estimate of Ωp due to spacecraft fields [Acuña et al.,
2001]. The average power density for frequencies higher
than the upper limit of the interval is indicated in gray dashed
lines. The gray solid line shows the average plus the STD.
The latter value is 3.92 times smaller than the power in the in-
terval around Ωp.
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[13] An upstream wave occurrence rate R was defined for
each orbit as the number of intervals meeting the criterion
above, divided by the total number of intervals. To investi-
gate the long-term (seasonal and annual) variability, R was
averaged every 15 orbits with a 14-orbit overlap. The aver-
aged occurrence rate was called <R>.

3. Results and Discussion

[14] Figure 2a shows the value of R and <R> between 14
September 1997 and 17 September 1998. Data gaps corre-
spond to the AB1-SPO1 transition (20 February–26 March
1998), and solar conjunction hiatus (30 April–26 May
1998). In what follows, we describe the behavior of <R>
in order to understand the long-term variability of the wave
occurrence. Soon after MOI—around the southern spring
equinox (12 September 1997)—<R> increases until a local
maximum of 32% in late October 1997. After a brief decline
in the occurrence to ~21% in early November 1997, <R>
undergoes a strong increase, which ends around Mars perihe-
lion (7 January 1998), where waves are observed in 92% of
the time. After 12 January, the wave abundance drops until
it hits the first data gap. During the entire SPO1 (April
1998), high values of <R> (around 80%) are observed.
After solar conjunction, a more gradual decrease is observed
in SPO2, with values around 20% during early southern au-
tumn. In spite of the altitude restriction used in this study,

occurrence rates are consistent with estimates obtained by
Brain et al. [2002].
[15] Figure 2a suggests a temporal dependence in the abun-

dance of upstream waves at Ωp. The hypothesis that any var-
iability in the wave occurrence at a given location is
attributed to temporal effects is supported by the strong dif-
ference in wave abundance for orbits with similar geometry,
and the absence of a manifest influence upon the convective
electric field or the IMF direction [Romanelli et al., 2013]. In
what follows, changes in the efficiency of the wave genera-
tion mechanism, the properties of the solar wind, the effi-
ciency of the ionization mechanisms, and/or the local
exospheric H density are discussed in the context of
MGS observations.

3.1. Wave Generation and Evolution

[16] A central question is how representative the presence of
waves atΩp is for the local neutral density.Cowee et al. [2012]
suggest that the increase in the amplitude of waves atΩp is due
to the increase in the local pickup ion density and the cumula-
tive ion production upstream of the observation point. As exo-
spheric densities increase, increases in both the local and
cumulative ion productions are expected. Accordingly, higher
occurrence rates will be expected atΩp as long as nonlinear ef-
fects do not degrade the wave spectra below the detection
threshold. According to Cowee et al., [2012], the observed
waves would be below nonlinear saturation.
[17] Also the wavelength for maximum linear growth rates

at least for the ion-ion right-hand mode is on the order of a
Martian radius [Bertucci et al., 2005], setting a limit on the
spatial resolution in the use of waves as indicators of
exospheric densities.

3.2. Changes in Solar Wind Parameters and
Ionization Rates

[18] Self-consistent hybrid simulations [Modolo et al.,
2005] suggest that charge exchange is the main source of es-
caping protons and that the escape rate of these protons is
four times higher during solar minimum with respect to solar
maximum due to the expansion of the neutral H corona.
Although MGS measurements are not able to characterize
the photoionization and charge exchange rates, the solar ac-
tivity during the premapping phase was typical of a mini-
mum, suggesting that both ionization rates would not have
experienced major alterations. In agreement with this view,
recent works addressing the generation of the same type of
waves [Cowee et al., 2012] assume constant ionization rates.
[19] Transient solar wind disturbances such as Interplanetary

Coronal Mass Ejections (ICMEs) have been proven to alter
significantly the Martian plasma environment [Crider et al.,
2005]. However, the low solar activity, the absence of
drastic short-term (a few days long) changes in <R>, and the
fact that from September 1997 to September 1998 the
solar F10.7 flux at Mars did not vary significantly
(107.90 ± 18.59 cm�2 s�1) all suggest that such events might
not be the cause of the long-term variability observed in the
averaged wave occurrence.

3.3. Changes in the Extent of the Distant Martian
Hydrogen Corona

[20] Figure 2b shows the H exospheric density at
15,400 km altitude above the Martian South Pole and the
density averaged over the entire dayside hemisphere at the

Figure 2. (a) Occurrence of upstream waves at Ωp below
20,400 km altitude from September 1997 through
September 1998. Rates per orbit (R, gray dots) and 15-orbit
averaged (<R>, black dots) are displayed. (b) Modeled H
density above Mars South Pole and dayside-averaged H den-
sity at 15,400 km altitude for minimum and mean solar activ-
ity from August 1997 to October 1998. Mars perihelion (PH,
7 January 1998), southern hemisphere spring equinox (SSE,
12 September 1997), southern hemisphere summer solstice
(SSS, 6 February 1998), and southern hemisphere autumn
equinox (SAE, 14 July 1998) are indicated.
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same altitude, between August 1997 and October 1998. H
densities for minimum and mean solar activity conditions
are provided by a 3D exospheric model [Chaufray et al.
2012], which incorporates nonuniform densities and temper-
atures at the exobase from a 3D Laboratoire de Météorologie
Dynamique Global Climate Model (LMD-GCM) model
[González-Galindo et al., 2009]. Values initially given as a
function of solar longitude are then converted to time using
MGS ephemeris. The 15,400km altitude level was chosen
based on the average altitude of MGS for the chosen data set.
Two basic properties are immediately evident. First, H densities
increase with solar activity, which reveals the UV control of the
thermosphere. Second, the influence of solar declination and
heliocentric distance is manifested in density curves displaying
annual maxima around Mars perihelion and southern summer
solstice (6 February 1998) and lower values during spring and
autumn. Third, H densities are not symmetric around their
maxima. This is probably due to heliocentric distance effects
(aphelia occurred on 29 January 1997 and 16 December 1998,
respectively). In addition to this trend, the model predicts oscil-
lations in density in timescales of a few months. The amplitude
of these oscillations is smaller for the dayside profiles, probably
indicating a seasonal effect. In spite of these differences,
however, the dayside average and South Pole density curves
display maxima at perihelion.
[21] Although the wave growth rate depends on several

factors, the observed variability in <R> could be related
with the annual and seasonal changes in the H profile pre-
dicted by our exospheric model. First, the average wave
occurrence and the H density curves show maxima around
perihelion/southern summer solstice and display lower
values around the equinoxes, suggesting that the occurrence
of waves could be influenced by the expansion or contraction
of the planet’s exosphere in response to annual/seasonal
changes in solar UV heating. Second, wave occurrence and
density curves display oscillations in timescales on the order
of a few months. However, the timescales of the density
oscillations predicted by the exospheric model seem to be
longer, degrading any possible correlation. Third, densities
for the South Pole and dayside show similar behaviors
suggesting that at those altitudes, H density and ultimately
wave occurrence could be more sensitive to annual rather than
seasonal changes. Finally, the influence of a possible change in
solar activity remains elusive. In principle, the low variability
in the F10.7 flux suggests thatMGSmeasurements might have
taken place during solar minimum conditions.
[22] This comparison provides a possible explanation to

the temporal variability in the occurrence of waves at Ωp

based on the expansion and contraction of the Martian H
exosphere due to annual and seasonal components in the
solar UV heating of the thermosphere. If this is confirmed,
the temporal variability in the occurrence of waves at Ωp

could be used to study the coupling of the thermosphere with
the exosphere of Mars [Bougher et al., 1999], where direct
observations are unavailable. In particular, wave observa-
tions coincide with the occurrence of dust storms [Keating
et al., 1998; Clancy et al., 2000] with known effects on the
Martian thermosphere.
[23] The influence of the exosphere in the Martian solar

wind interaction has also been suggested to be responsible
for other plasma structures such as the magnetic pileup bound-
ary [MPB; see, e.g., Crider et al., 2000]. Brain et al., [2005]
revealed that the altitude of the northern MPB (i.e., far from

the influence of crustal fields) is sensitive to Martian
seasons. The question whether or not this behavior is
related to the hypotheses presented here is beyond the
scope of this work. Nevertheless, all these results suggest
that in addition to the solar cycle, the annual and seasonal
variability in the UV irradiance could be a potentially
important component of the temporal evolution of the
Martian plasma environment.

4. Conclusions

[24] The pickup of exospheric ions, and the subsequent
growth and evolution of plasma waves via microscopic
plasma interactions are complex physical processes. By vir-
tue of a particular property of waves propagating along the
IMF and originating from exospheric ion pickup, the analysis
of the occurrence of upstream transverse fluctuations atΩp at
high southern latitudes shows that the abundance of such
waves varies with time. This variability is found to display
a similar long-term trend as those of the densities of exo-
spheric H obtained from models, which take the effect of
thermospheric heating by solar UV radiation into account.
The underlying assumption is that wave generation mainly
depends on the H density and that ionization rates remain
constant. This approach follows previous works, which sug-
gest that the increase in the ion production is due to changes
in the exospheric densities.
[25] Future studies will focus on the relation between exo-

spheric densities and the amplitudes of upstream waves. This
will require the support of numerical simulations including
linear and nonlinear wave evolution where ion pickup rates
display a spatial gradient. Also, the use of improved exo-
spheric models and more comprehensive measurements
(such as those to be carried out by the MAVEN mission) will
help to confirm or disprove the proposed interpretation. In
particular, the effects of the vertical transfer of energy and
momentum at different timescales, including the role of
global dust storms should be investigated.
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