7,342 research outputs found

    High energy improved scalar quantum field theory from noncommutative geometry without UV/IR-mixing

    Full text link
    We consider an interacting scalar quantum field theory on noncommutative Euclidean space. We implement a family of noncommutative deformations, which -- in contrast to the well known Moyal-Weyl deformation -- lead to a theory with modified kinetic term, while all local potentials are unaffected by the deformation. We show that our models, in particular, include propagators with anisotropic scaling z=2 in the ultraviolet (UV). For a \Phi^4-theory on our noncommutative space we obtain an improved UV behaviour at the one-loop level and the absence of UV/IR-mixing and of the Landau pole.Comment: 4 pages, no figures, elsarticle.cls; references adde

    Proton-Proton Physics with ALICE

    Full text link
    The goal of the ALICE experiment at LHC is to study strongly interacting matter at high energy densities as well as the signatures and properties of the quark-gluon plasma. This goal manifests itself in a rich physics program. Although ALICE will mainly study heavy-ion collisions, a dedicated program will concentrate on proton-proton physics. The first part will introduce the ALICE experiment from a pp measurement's point of view. Two unique properties are its low pT cut-off and the excellent PID capabilities. The various topics of the proton-proton physics program, which will allow a close scrutiny of existing theoretical models, will be described. Furthermore, the interpretation of measurements of heavy-ion collisions necessitates the comparison to measurements of pp collisions. The second part will concentrate on the day-1 physics program of ALICE. At startup, neither the LHC luminosity nor its energy will have their nominal values. Furthermore, the ALICE detector is in the process of being aligned and calibrated. Still several physics topics can be studied from the very beginning. These will be presented as well as the effort that is already ongoing to be ready for the first collision. The statistics needed for each of the topics will be given with respect to the foreseen LHC startup scenario.Comment: Contribution for the 1st International Workshop on Soft Physics in ultrarelativistic Heavy Ion Collisions, Catania, Italy, 200

    Witten index, axial anomaly, and Krein's spectral shift function in supersymmetric quantum mechanics

    Get PDF
    A new method is presented to study supersymmetric quantum mechanics. Using relative scattering techniques, basic relations are derived between Krein’s spectral shift function, the Witten index, and the anomaly. The topological invariance of the spectral shift function is discussed. The power of this method is illustrated by treating various models and calculating explicitly the spectral shift function, the Witten index, and the anomaly. In particular, a complete treatment of the two‐dimensional magnetic field problem is given, without assuming that the magnetic flux is quantized

    Regularization of 2d supersymmetric Yang-Mills theory via non commutative geometry

    Get PDF
    The non commutative geometry is a possible framework to regularize Quantum Field Theory in a nonperturbative way. This idea is an extension of the lattice approximation by non commutativity that allows to preserve symmetries. The supersymmetric version is also studied and more precisely in the case of the Schwinger model on supersphere [14]. This paper is a generalization of this latter work to more general gauge groups

    Generalized local interactions in 1D: solutions of quantum many-body systems describing distinguishable particles

    Get PDF
    As is well-known, there exists a four parameter family of local interactions in 1D. We interpret these parameters as coupling constants of delta-type interactions which include different kinds of momentum dependent terms, and we determine all cases leading to many-body systems of distinguishable particles which are exactly solvable by the coordinate Bethe Ansatz. We find two such families of systems, one with two independent coupling constants deforming the well-known delta interaction model to non-identical particles, and the other with a particular one-parameter combination of the delta- and (so-called) delta-prime interaction. We also find that the model of non-identical particles gives rise to a somewhat unusual solution of the Yang-Baxter relations. For the other model we write down explicit formulas for all eigenfunctions.Comment: 23 pages v2: references adde

    On the Effective Action of Noncommutative Yang-Mills Theory

    Full text link
    We compute here the Yang-Mills effective action on Moyal space by integrating over the scalar fields in a noncommutative scalar field theory with harmonic term, minimally coupled to an external gauge potential. We also explain the special regularisation scheme chosen here and give some links to the Schwinger parametric representation. Finally, we discuss the results obtained: a noncommutative possibly renormalisable Yang-Mills theory.Comment: 19 pages, 6 figures. At the occasion of the "International Conference on Noncommutative Geometry and Physics", April 2007, Orsay (France). To appear in J. Phys. Conf. Se

    Degenerate noncommutativity

    Full text link
    We study a renormalizable four dimensional model with two deformed quantized space directions. A one-loop renormalization is performed explicitly. The Euclidean model is connected to the Minkowski version via an analytic continuation. At a special value of the parameters a nontrivial fixed point of the renormalization group occurs.Comment: 16 page

    The rigid syntomic ring spectrum

    Get PDF
    The aim of this paper is to show that Besser syntomic cohomology is representable by a rational ring spectrum in the motivic homotopical sense. In fact, extending previous constructions, we exhibit a simple representability criterion and we apply it to several cohomologies in order to get our central result. This theorem gives new results for syntomic cohomology such as h-descent and the compatibility of cycle classes with Gysin morphisms. Along the way, we prove that motivic ring spectra induces a complete Bloch-Ogus cohomological formalism and even more. Finally, following a general motivic homotopical philosophy, we exhibit a natural notion of syntomic coefficients.Comment: Final version to appear in the Journal de l'institut des Math\'ematiques de Jussieu. Many typos have been corrected and the exposition has been improved according to the suggestions of the referees: we thank them a lot

    Measuring photon anti-bunching from continuous variable sideband squeezing

    Get PDF
    We present a technique for measuring the second-order coherence function g(2)(τ)g^{(2)}(\tau) of light using a Hanbury-Brown Twiss intensity interferometer modified for homodyne detection. The experiment was performed entirely in the continuous variable regime at the sideband frequency of a bright carrier field. We used the setup to characterize g(2)(τ)g^{(2)}(\tau) for thermal and coherent states, and investigated its immunity to optical loss. We measured g(2)(τ)g^{(2)}(\tau) of a displaced squeezed state, and found a best anti-bunching statistic of g(2)(0)=0.11±0.18g^{(2)}(0) = 0.11 \pm 0.18.Comment: 4 pages, 4 figure

    Subspace hypercyclicity

    Get PDF
    A bounded linear operator T on Hilbert space is subspace-hypercyclic for a subspace M if there exists a vector whose orbit under T intersects the subspace in a relatively dense set. We construct examples to show that subspace-hypercyclicity is interesting, including a nontrivial subspace-hypercyclic operator that is not hypercyclic. There is a Kitai-like criterion that implies subspace-hypercyclicity and although the spectrum of a subspace-hypercyclic operator must intersect the unit circle, not every component of the spectrum will do so. We show that, like hypercyclicity, subspace-hypercyclicity is a strictly infinite-dimensional phenomenon. Additionally, compact or hyponormal operators can never be subspace-hypercyclic.Comment: 15 page
    • 

    corecore