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THE RIGID SYNTOMIC RING SPECTRUM

F. DÉGLISE, N. MAZZARI

Abstract. The aim of this paper is to show that rigid syntomic cohomology – defined by
Besser – is representable by a rational ring spectrum in the motivic homotopical sense. In fact,

extending previous constructions, we exhibit a simple representability criterion and we apply
it to several cohomologies in order to get our central result. This theorem gives new results

for rigid syntomic cohomology such as h-descent and the compatibility of cycle classes with

Gysin morphisms. Along the way, we prove that motivic ring spectra induce a complete Bloch-
Ogus cohomological formalism and even more. Finally, following a general motivic homotopical

philosophy, we exhibit a natural notion of rigid syntomic coefficients.

MSC: 14F42; 14F30.
Key words: Rigid syntomic cohomology, Beilinson motives, Bloch-Ogus.

Introduction

In the 1980s, Beilinson stated his conjectures relating the special values of L-functions and the
regulator map of a variety X defined over a number field [Bĕı84, Bĕı86a]. The regulator considered
by Beilinson is a map from the K-theory of X with target the Deligne-Beilinson cohomology1 with
real coefficients

reg : K2i−n(X)(i) ⊗Q→ Hn
DB(X,R(i)) .

One can define Hn
DB(X,A(i)) for any subring A ⊂ R. For A = Z, Beilinson proved that

Hn
DB(X,Z(i)) is the absolute Hodge cohomology theory: i.e. it computes the group of homo-

morphisms in the derived category of mixed Hodge structures

Hn
DB(X,Z(i)) = HomDb(MHS)(Z, RΓHdg(X)(i)[n]) ,

where RΓHdg(X) is the mixed Hodge complex associated to X whose cohomology is the Betti
cohomology of X endowed with its mixed Hodge structure [Bĕı86b]. Further Beilinson conjectured
that the higher K-theory groups form an absolute cohomology theory, in fact the universal one,
called motivic cohomology. This vision is now partly accomplished. We do not have the category
of mixed motives, but we can construct a triangulated category playing the role of its derived
category. More precisely, Cisinski and Déglise proved that for any finite dimensional noetherian
scheme X there exists a monoidal triangulated category DMB(X) = DMB(X,Q) (along with the
six operations) such that

Hn,i
B (X) := HomDMB(S)(1S , π∗1X(i)[n]) ' K2i−n(X)(i) ⊗Q

when π : X → S is a smooth morphism and S is regular [CD12b].
Now let K be a p-adic field (i.e. a finite extension of Qp) with ring of integers R. Given X a

smooth and algebraic R-scheme, Besser defined the analogue of the Deligne-Beilinson cohomology
in order to study the Beilinson conjectures for p-adic L-functions [Bes00]. The work of Besser
extends a construction initiated by Gros [Gro90]. The cohomology defined by Besser is called
the rigid syntomic2 cohomology, denoted by Hn

syn(X, i). Roughly it is defined as follows: let

Date: June 10, 2014.
1Here we assume that the weight filtration is part of the definition. This is not the case in the original definition

by Deligne, where only the Hodge filtration was considered. See [Bĕı86b] for a complete discussion.
2The word rigid is due to the fact that the rigid cohomology of Berthelot plays a role in the definition. The

word syntomic comes from the work of Fontaine-Messing [FM87] where the syntomic site was used to define a

cohomology theory strictly related to the one of Besser in the smooth and projective case.
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2 F. DÉGLISE, N. MAZZARI

RΓrig(Xs) (resp. RΓdR(Xη)) be a complex of Qp-vector spaces whose cohomology is the rigid
(resp. de Rham) cohomology of the special fiber Xs (resp. generic fiber Xη) of X, then

Hn
syn(X, i) = Hn−1(Cone(f : RΓrig(Xs)⊕ F iRΓdR(Xη)→ RΓrig(Xs)⊕RΓrig(Xs)) ,

where f(x, y) = (x−φ(x)/pi, sp(y)−x), φ is the Frobenius map, sp is the Berthelot’s specialization
map.

There is a regulator map for this theory and one can also interpret rigid syntomic cohomology
as an absolute cohomology [Ban02, CCM12].

The aim of the present paper is to represent rigid syntomic cohomology in the triangulated cat-
egory of motives by a ring object Esyn. This allows one to prove that rigid syntomic cohomology
is a Bloch-Ogus theory and satisfies h-descent (i.e. proper and fppf descent). In particular, we
obtain that the Gysin map is compatible with the direct image of cycles as conjectured by Besser
[Bes12, Conjecture 4.2]. We can say that this paper is the natural push-out of the work of the
first author in collaboration with Cisinski [CD12a] and that of the second author in collaboration
with Chiarellotto and Ciccioni [CCM12].

Let us review in more detail the content of this work.
First we recall some results of the motivic homotopy theory. Let S be a base scheme (noetherian
and finite dimensional). To any object E in DMB(S) we can associate a bi-graded cohomology
theory

En,i(X) := HomDMB(S)(M(X),E(i)[n])

where M(X) := π!π
!
1S is the (covariant) motive of π : X → S. The cohomology defined by the

unit object 1S of the monoidal category DMB(S) represents rational motivic cohomology denoted

by HB. When X is regular, Hn,i
B (X) coincides with the original definition of Beilinson using

Adams operations on rational Quillen K-theory.
The category of Beilinson motives DMB(S) can be constructed using some homotopical machinery
starting with the category C(S,Q) of complexes of Q-linear pre-sheaves on the category of affine
and smooth S-schemes (see § 1). An object of DMB(S) should be thought of as a cohomology the-
ory on the category of S-schemes which is A1-homotopy invariant, satisfies the Nisnevich excision
and is oriented (in the sense of remark 1.4.11 point (1)).

The category of Beilinson motives is monoidal. Monoids with respect to this tensor structure
corresponds to cohomology theory equipped with a ring structure. Following the general termi-
nology of motivic homotopy theory, we call such a monoid a motivic ring spectrum (Def. 2.1.1).
Given such an object E, the associated cohomology theory En,i(X) is naturally a bi-graded Q-linear
algebra satisfying the following properties:

(1) Higher cycle class/regulator. – The unit section of the ring spectrum E induces a canonical
morphism, called regulator:

σ : Hn,i
B (X)→ En,i(X)

which is functorial in X and compatible with products.
(2) Gysin. – For any projective morphism f : Y → X between smooth S-schemes there is a

(functorial) morphism

f∗ : En,i(Y )→ En−2d,i−d(X).

where d is the dimension of f .
(3) Projection formula. – For f as above and any pair (x, y) ∈ E∗,∗(X)× E∗,∗(Y ), one has:

f∗(f
∗(x).y) = x.f∗(y).

(3’) Degree formula. – For any finite morphism f : Y → X between smooth connected S-
schemes, and any x ∈ En,i(X),

f∗f
∗(x) = d.x

where d is the degree of the function fields extension associated with f .
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(4) Excess intersection formula. – Consider a cartesian square of smooth S-schemes:

Y ′
q //

g ��

X ′

f��
Y

p // X

such that p is projective. Let ξ be the excess intersection bundle associated with that
square and let e be its rank. Then for any y ∈ E∗,∗(Y ), one gets:

f∗p∗(y) = q∗(ce(ξ).g
∗(y)).

(5) The regulator map σ is natural with respect to the Gysin functoriality.
(5’) The regulator map σ induces a Chern character

chn : Kn(X)Q →
⊕
i∈Z

E2i−n,i(X)

which satisfies the (higher) Riemann-Roch formula of Gillet (see [Gil81])
(6) Descent. – The cohomology En,i admits a functorial extension to diagrams of S-schemes

and satisfies cohomological descent for the h-topology3: given any hypercover p : X → X
for the h-topology, the induced morphism:

p∗ : En,i(X)→ En,i(X )

is an isomorphism.4

(7) Bloch-Ogus theory. – One can associate with E a canonical homology theory, the Borel-
Moore E-homology. For any separated S-scheme X with structural morphism f , and any
pair of integers (n, i), put:

EBM
n,i (X) = Hom

(
1S , f∗f

!E(−i)[−n]
)
.

Then, the pair (E,EBM) is a twisted Poincaré duality theory with support in the sense
of Bloch and Ogus (cf [BO74]). Moreover Borel-Moore E-homology is contravariantly
functorial with respect to smooth morphisms.

These properties follow easily from the results proved in [CD12b] and [Dég08]. We collect them
in Section 2.

Since our aim is to prove that rigid syntomic cohomology satisfies the Bloch-Ogus formalism,
we just need to represent it as a motivic ring spectrum. Thus we prove the following criterion,
which is the main result of the first section. Before stating it we introduce the following notation:
for any complex E ∈ C(S,Q) and X/S smooth and affine let

Hn(X,E) := Hn(E(X)) .

Theorem (cf. Prop. 1.4.10). Let (Ei)i∈N be a family of complexes in C(S,Q) forming a N-
graded commutative monoid together with a section c : Q[0]→ E1(Gm)[1] satisfying the following
properties:

(1) Excision. – Let ENisi be the associated Nisnevich sheaves. For any integer i and any X/S
affine and smooth, Hn(X,Ei) ' Hn

Nis(X,E
Nis
i ).

(2) Homotopy. – For any integer i and any X/S affine and smooth, Hn(X,Ei) ' Hn(A1
X , Ei).

(3) Stability. – Let c̄ be the image of c in H1(Gm, E1). For any smooth S-scheme X and any
pair of integers (n, i) the following map5

Hn(X,Ei)→
Hn+1(X ×Gm, Ei+1)

Hn+1(X,Ei+1)
, x 7→ πX

(
x× c̄

)
3The h-topology was introduced by Voevodsky. Recall that covers for this topology are given by morphisms of

schemes which are universal topological epimorphism.
4One deduces easily from this isomorphism the usual descent spectral sequence.
5We let p : X × Gm → X be the canonical projection and πX following quotient map:

0→ Hn(X,Ei)
p∗−−→ Hn(X × Gm, Ei)

πX−−→
Hn+1(X × Gm, Ei+1)

Hn+1(X,Ei+1)
→ 0 .
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is an isomorphism.
(4) Orientation.– Let u : Gm → Gm be the inverse map of the group scheme Gm, and denote

by c̄′ the image of c in the group H1(Gm, E1)/H1(S,E1). The following equality holds:
u∗(c̄′) = −c̄′.

Then there exists a motivic ring spectrum E together with canonical isomorphisms

HomDMB(S)(M(X),E(i)[n]) ' Hn(X,Ei)

for integers (n, i) ∈ Z × N, functorial in the smooth S-scheme X and compatible with products.
Moreover, E depends functorially on (Ei)i∈N and c.

The main difficulty of the above result is that the monoid structure on Ei is defined at the
level of complexes of pre-sheaves and not just in the homotopy category. Using this result we
can prove (in Section 2) the existence of motivic ring spectra representing several cohomology
theories. First we prove that for any algebraic scheme X, defined over a field of characteristic
zero, there is a motivic ring EFdR such that En,iFdR(X) ' F iHn

dR(X) is the i-th step of the Hodge
filtration of the de Rham cohomology of X as defined by Deligne [Del74]. Then we prove that
the rigid cohomology of Berthelot is also represented by a motivic ring spectrum Erig. As we
already mentioned the rigid syntomic cohomology of Besser is defined using a kind of mapping
cone complex whose components are differential graded algebras (namely it is the homotopy limit
of the diagram in 3.5.1). Thus we cannot apply directly the above criterion since we would need
to define a multiplication on the cone compatible with that of its components. To go around this
problem we prove that a homotopy limit of motivic ring spectra is a motivic ring spectrum. Hence
the rigid syntomic cohomology can be represented by a motivic ring spectrum as claimed.

As already mentioned, the existence of Esyn allows us to naturally extend the rigid syntomic
cohomology to singular schemes. By devissage, we show how to compute the syntomic cohomology
of a semi-stable curve. We warn the reader that this is (probably) not the correct way to extend
the cohomology to a semistable curve in the perspective of the theory of p-adic L-functions.

In passing we show some results about what we call the absolute rigid cohomology given by

Hn
φ (X, i) := HomDb(F-isoc)(1, RΓ(X)(i)[n])

where RΓ(X) is a complex of F -isocrystals such that Hn(RΓ(X)) = Hn
rig(X), for X a scheme over

a perfect field k.

The last application of the representability theorem of rigid syntomic cohomology is the ex-
istence of a natural theory of rigid syntomic coefficients for R-schemes (Section 3.8). Using the
techniques of [CD12b, sec. 17], we set up the theory of rigid syntomic modules: over any R-scheme
X, they are modules (in a strict homotopical sense) over the ring spectrum Esyn,X obtained by
pullback along the structural morphism of X/R. The corresponding category Esyn-modX for vari-
ous R-schemes X, shares many of the good properties of the category DMB, such as the complete
Grothendieck six functors formalism. It receives a natural realization functor from DMB, which
is triangulated, monoidal (and commutes with f∗ and f!).

This construction might be the main novelty of our representability theorem. However, to be
complete we should relate these modules with more concrete categories of coefficients, probably
related with F -isocrystals. This relation will be investigated in a future work.

Acknowledgments. The authors are grateful to Joseph Ayoub, Amnon Besser, Bruno Chiarellotto,
Denis-Charles Cisinski, Andreas Langer, Victor Rotger and Georg Tamme, Jörg Wildeshaus for
our initial motivation, their useful comments or stimulating conversations about their research
in connection to this work. The second author is grateful to Michael Harris and the “Fondation
Simone et Cino del Duca de l’Institut de France” for the year spent in Jussieu.

1. Motivic homotopy theory

In this section we first recall a basic construction of motivic homotopy theory, the category of
Morel motives (Def. 1.3.2) – the reader is referred to [CD12b] for more details. Then we prove
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a criterion for the representability of a cohomology theory by a ring spectrum. This criterion is
new and it generalizes an analogous result from [CD12a].

Throughout this section, S will be a base scheme, assumed to be noetherian finite dimensional
and Λ will be a ring of coefficients. We will denote by Sm/S either the category of smooth S-
schemes of finite type or the category of such schemes which in addition are affine (absolutely).
Note that equipped with the Nisnevich topology, the two induced topoi are equivalent.

1.1. The effective A1-derived category.

1.1.1. We let PSh(S,Λ) be the category of presheaves of Λ-modules on Sm/S and C(PSh(S,Λ))
the category of complexes of such presheaves. Given such a complex K, a smooth S-scheme X
and an integer n ∈ Z, we put:

Hn(X,K) := Hn(K(X)).

This is the cohomology of K computed in the derived category of PSh(S,Λ): if we denote by Λ(X)
the presheaf of Λ-modules represented by X, we get:

Hn(X,K) = HomD(PSh(S,Λ))(Λ(X),K[n]).

A closed pair will be a couple (X,Z) such that X is a smooth S-scheme and Z is a closed
subscheme of X – in fact one requires that X and (X −Z) are in Sm/S. We also define the n-th
cohomology group of (X,Z) – equivalently: of X with support in Z – with coefficients in K as:

Hn
Z(X,K) := Hn−1

(
Cone(K(X)→ K(X − Z))

)
.

A morphism of closed pairs f : (Y, T ) → (X,Z) is a morphism of schemes f : Y → X such
that f−1(Z) ⊂ T . We say f is excisive if it is tale, f−1(Z) = T and f induces an isomorphism
Tred → Zred. The cohomology groups H∗Z(X,K) are contravariant in (X,Z) with respect to
morphisms of closed pairs.

Definition 1.1.2. Let K be a complex of PSh(S,Λ).

(1) We say that K is Nis-local if for any excisive morphism of closed pairs f : (Y, T )→ (X,Z),
the pullback morphism

f∗ : H∗Z(X,K)→ H∗T (Y,K)

is an isomorphism.
(2) We say that K is A1-local if for any smooth S-scheme X, the pullback induced by the

canonical projection p of the affine line over X

p∗ : H∗(X,K)→ H∗(A1
X ,K)

is an isomorphism.

Following Morel, we define the effective A1-derived category over S with coefficients in Λ as the
full subcategory of D(PSh(S,Λ)) made by complexes which are Nis-local and A1-local. We will
denote it by Deff

A1(S,Λ).

1.1.3. Let us recall the following facts on the category defined above:

(1) Let Sh(S,Λ) be the category of sheaves of Λ-modules on Sm/S for the Nisnevich topology.
Then Deff

A1(S,Λ) is equivalent to the A1-localization of the derived category D(Sh(S,Λ)),
as defined in [CD12a, § 1.1].

This comes from the fact that the pair of adjoint functors, whose left adjoint is the
associated Nisnevich sheaf a, induces a derived adjunction

a : D(PSh(S,Λ)) � D(Sh(S,Λ)) : O

whose right adjoint O is fully faithful with essential image the complexes which are Nis-
local – this is classical see for example [CD12b, 5.2.10 and 5.2.13]. In particular, Nis-local
complexes can be described as those complexes K which satisfy Nisnevich descent: for
any Nisnevich hypercover P• → X of any smooth S-scheme X, the induced map:

K(X)→ Tot
(
K(P•)

)
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is a quasi-isomorphism – the right hand-side is the total complex associated with the
obvious double complex.

(2) The fact that the category Deff
A1(S,Λ) can be handled in practice comes from its description

as the homotopy category associated with an explicit model category structure on the
category C(PSh(S,Λ)) of complexes on the Grothendieck abelian category PSh(S,Λ):
• Weak equivalences (also called weak A1-equivalences) are the morphisms of complexes
f such that for any complex K which is A1-local and Nis-local, HomD(PSh(S,Λ))(f,K)
is an isomorphism.
• Fibrant objects are the complexes which are Nis-local and A1-local. Fibrations are

the morphisms of complexes which are epimorphisms and whose kernel is fibrant.
For the proof that this defines a model category, we refer the reader to [CD09a]: we first
consider the model category structure associated with the Grothendieck abelian category
PSh(S,Λ) (see [CD09a, Ex. 2.3]) and we localize it with respect to Nisnevich hypercovers
and A1-homotopy ([CD09a, Section 4]). Let us recall that a typical example of cofibrant
objects for this model structure are the presheaves of the form Λ(X) for a smooth S-scheme
X.

We derive from this model structure the existence of fibrant (resp. cofibrant) resolu-
tions: associated with a complex of presheaves K, we get a fibrant Kf (resp. cofibrant
Kc) and a map

K → Kf (resp. Kc → K),

which is a cofibration (resp. fibration) and a weak A1-equivalence. These resolutions can
be chosen to be natural in K.

This can be used to derive functors. In particular, the natural tensor product ⊗ of
C(PSh(S,Λ)) as well as its internal complex morphism Hom can be derived using the
formulas:

K ⊗L L = Kc ⊗ Lc, R Hom(K,L) = Hom(Kc, Lf );

see [CD09a, Sections 3 and 4].6

1.2. The A1-derived category.

1.2.1. We define the Tate object as the following complex of presheaves of Λ-modules:

(1.2.1.a) Λ(1) := coKer(Λ
s1∗−−→ Λ(Gm))[−1]

where s1 is the unit section of the group scheme Gm, considered as an S-scheme. Given a complex
K and an integer i ≥ 0, we denote by K(i) the tensor product of K with the i-th tensor power of
Λ(1) (on the right).

As usual in the general theory of motives, one is led to invert the object Λ(1) for the tensor
product. In the context of motivic homotopy theory, this is done using the construction of spectra,
borrowed from algebraic topology.

For any integer i > 0, we will denote by Σi the group of permutations of the set {1, · · · , i},
Σ0 = 1.

Definition 1.2.2. A Tate spectrum (over S with coefficients in Λ), is a sequence E = (Ei, σi)i∈N
such that:

• for each i ∈ N, Ei is a complex of PSh(S,Λ) equipped with an action of Σi,
• for each i ∈ N, σi is a morphism of complexes

σi : Ei(1)→ Ei+1,

called the suspension map (in degree n).
• For any integers i ≥ 0, r > 0, the map induced by the morphisms σi, · · · , σi+r:

Ei(r)→ Ei+r

6 Note in particular that, according to [CD09a, Proposition 4.11], the model category described above is a

monoidal model category which satisfies the monoid axiom.
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is compatible with the action of Σi × Σr, given on the left by the structural Σi-action
on Ei and the action of Σr via the permutation isomorphism of the tensor structure on
C(PSh(S,Λ)), and on the right via the embedding Σi×Σr → Σi+r obtained by identifying
the sets {1, ..., i+ r} and {1, ..., i} t {1, ..., r}.

A morphism of Tate spectra f : E → F is a sequence of Σi-equivariant maps (fi : Ei → Fi)n∈N
compatible with the suspension maps. The corresponding category will be denoted by Sp(S,Λ).

A morphism f as above is called a level weak equivalence if for any integer i ≥ 0, the morphism
of complexes fi is a quasi-isomorphism. We denote by DTate(S,Λ) the localization of Sp(S,Λ)
with respect to level weak equivalences (See [CD12a, Sec. 1.4]).

Complexes and spectra are linked by a pair of adjoint functors (Σ∞,Ω∞) defined respectively
for a complex K and a Tate spectrum E as follows:

(1.2.2.a) Σ∞K := (K(i))i∈N , Ω∞(E) = E0,

where K(i) is equipped with the action of Σi by its natural action through the symmetry isomor-
phism of the tensor structure on C(PSh(S,Λ)).

1.2.3. The category of Tate spectra can be described using the category of symmetric sequences
of C(PSh(S,Λ)): the objects of this category are the sequences (Ei)i∈N of complexes of PSh(S,Λ)
such that Ei is equipped with an action of Σi. This is a Grothendieck abelian category on which
on can construct a closed symmetric monoidal structure (see [CD09a, Section 7]). Moreover, the
obvious symmetric sequence

Sym(Λ(1)) := (Λ(i))i∈N

has a canonical structure of a commutative monoid.
The category Sp(S,Λ) is equivalent to the category of modules over Sym(Λ(1)) (see again loc.

cit.). Therefore, it is formally a Grothendieck abelian category equipped with a closed symmetric
monoidal structure. Note that the tensor product can be described by the following universal
property: to give a morphism of Tate spectra µ : E ⊗ F → G is equivalent to give a family of
morphisms

µi,j : Ei ⊗ Fj → Gi+j

which is Σi×Σj-equivariant and compatible with the suspension maps (see loc. cit. Remark 7.2).

Definition 1.2.4. Let E be a Tate spectrum over S with coefficients in Λ.

(1) We say that E is Nis-local (resp. A1-local) if for any integer i ≥ 0, the complex Ei is
Nis-local (resp. A1-local).

(2) We say that E is a Tate Ω-spectrum if the morphism of Deff
A1(S,Λ) induced by adjunction

from σi:

Ei → R Hom(Λ(1), Ei+1)

is an isomorphism (i.e. a weak A1-equivalence).

For short, we say that E is stably fibrant if it is an Ω-spectrum which is Nis-local and A1-local.
We define the A1-derived category over S with coefficients in Λ, denoted by DA1(S,Λ), as the

full subcategory of DTate(S,Λ) made by the stably fibrant Tate spectra.

1.2.5. Recall the following facts on the previous construction:

(1) The construction of DA1(S,Λ) through spectra is a classical construction derived from
algebraic topology (see [Hov01]). In particular, the monoidal model structure on the
category C(PSh(S,Λ)) induces a canonical monoidal model structure on Sp(S,Λ) whose
homotopy category is precisely DA1(S,Λ). It is called the stable model category.

Therefore DA1(S,Λ) is a symmetric monoidal triangulated category with internal Hom.
Moreover, the adjoint functors (1.2.2.a) can be derived:

(1.2.5.a) Σ∞ : Deff
A1(S,Λ) � DA1(S,Λ) : Ω∞.
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The functor Σ∞ is monoidal.7 Recall also that given a Tate Ω-spectrum E as above and
an integer i ≥ 0, we get:

(1.2.5.b) Ω∞(E(i)) = Ei.

We will simply denote by Λ or 1 the unit of DA1(S,Λ) – instead of Σ∞ Λ.
(2) In fact the triangulated categories of the form DA1(S,Λ) for various schemes S are not

only closed monoidal but they are equipped with the complete formalism of Grothendieck
six operations

(f∗, f∗, f!, f
!,⊗,Hom)

as established by Ayoub in [Ayo07].8

1.3. Triangulated mixed motives.

1.3.1. In this section, Λ is a Q-algebra.
We recall the construction of Morel for deriving the triangulated category of mixed motives

from the category DA1(S,Λ) (see [CD12b, 16.2] for details).
Let us consider the inverse map u of the multiplicative group scheme Gm, corresponding to the

map:

OS [t, t−1]→ OS [t, t−1] , t 7→ t−1.

Recall from formula (1.2.1.a) the decomposition Λ(Gm) = Λ ⊕ Λ(1)[1], considered in DA1(S,Λ).
Given this decomposition, the map u∗ : Λ(Gm)→ Λ(Gm) can be written in matrix form as:(

1 0
0 ε1

)
Because Λ(1)[1] is ⊗-invertible in DA1(S,Λ), there exists a unique endomorphism ε of Λ in
DA1(S,Λ) such that ε1 = ε(1)[1].

Because u2 = 1, we get ε2 = 1. Thus we can define two complementary projectors in
EndDA1 (S,Λ)(Λ):

p+ =
1

2
.(1Λ − ε), p− =

1

2
.(1Λ + ε).

Given any object E in DA1(S,Λ), we deduce projectors p+ ⊗ E, p− ⊗ E of E. Because DA1(S,Λ)
is pseudo-abelian9, we deduce a canonical decomposition:

E = E+ ⊕ E−
where E+ (resp. E−) is the image of p+ ⊗E (resp. p− ⊗E). The following triangulated category
was introduced by Morel.

Definition 1.3.2. An object E in DA1(S,Λ) will be called a Morel motive if E− = 0. We denote
by DA1(S,Λ)+ the full subcategory of DA1(S,Λ) made by Morel motives.

Note that according to the above, the fact E is a Morel motive is equivalent to the property:

(1.3.2.a) ε⊗ E = −1E;

in other words, ε acts as −1 on E.

1.3.3. Recall the following facts, which legitimate the terminology of “Morel motives”:

(1) Obviously, the category DA1(S,Λ)+ is a triangulated monoidal sub-category of DA1(S,Λ).
Moreover, the six operations on DA1(−,Λ) induce similar operations on DA1(−,Λ)+ which
satisfy all of the six functors formalism.

7In fact, the homotopy category DA1 (S,Λ) equipped with its left derived functor Σ∞, is universal for the

property that Σ∞ is monoidal and Σ∞(K(1)) is ⊗-invertible (see again [Hov01]).
8Ayoub treats only the case where f is quasi-projective for the existence of the adjoint pair (f!, f

!). The general
case can be obtained by using the classical construction of Deligne as explained in [CD12b, section 2.2]. The reader
will also find a summary of the six operations formalism in loc. cit. Theorem 2.4.50.

9This is, for example, an application of the fact it is a triangulated category with countable direct sums (cf

[Nee01, 1.6.8]).
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(2) According to [CD12b, 16.2.13], there is an equivalence of triangulated monoidal categories:

DA1(S,Λ)+ ' DMB(S,Λ)

where DMB(S,Λ) is the triangulated category of Beilinson motives introduced in [CD12b,
Def. 14.2.1]. In DMB(S,Λ), given a smooth S-scheme X, we simply denote by M(X) the
object corresponding to Σ∞ Λ(X) and call it the motive of X.
Concretely, the above isomorphism means that when S is regular, for any smooth S-scheme
X and any pair (n, i) ∈ Z2, one has a canonical isomorphism:

(1.3.3.a) HomDA1 (S,Λ)+(Σ∞ Λ(X),Λ(i)[n]) ' K(i)
2i−n(X)⊗Q Λ

where K
(i)
2i−n(X) denotes the i-th Adams subspace of the rational Quillen K-theory of X

in homological degree (2i− n).10

Note in particular that according to the coniveau spectral sequence in K-theory and a
computation of Quillen, a particular case of the above isomorphism is the following one:

(1.3.3.b) HomDA1 (S,Λ)+(Σ∞ Λ(X),Λ(n)[2n]) ' CHn(X)⊗Z Λ ,

where the right hand side is the Chow group of n-codimensional Λ-cycles in X (S is still
assumed to be regular).

1.4. Ring spectra.

1.4.1. Recall that a commutative monoid in a symmetric monoidal category (M,⊗,1) is an object
M , a unit map η : 1 → M and a multiplication map µ : M ⊗M → M , such that the following
diagrams are commutative:

Unit: Associativity: Commutativity:

M
1⊗η // M ⊗M

µ

��

M ⊗M ⊗M
1⊗µ //

µ⊗1

��

M ⊗M

µ

��

M ⊗M
µ

((
γ

��
M

M M ⊗M
µ // M M ⊗M

µ

66

where γ is the obvious symmetry isomorphism.

Definition 1.4.2. A weak ring spectrum (resp. ring spectrum) E over S is a commutative monoid
in the symmetric monoidal category DA1(S,Λ) (resp. Sp(S,Λ)).11

1.4.3. A spectrum E in DA1(S,Λ) defines a bigraded cohomology theory on smooth S-schemes X
by the formula:

En,i(X) = HomDA1 (S,Λ)(Σ
∞ Λ(X),E(i)[n]).

The structure of a weak ring spectrum on E corresponds to a product in cohomology, usually
called the cup-product and defined as follows: given cohomology classes,

α : Σ∞ Λ(X)→ E(i)[n], β : Σ∞ Λ(X)→ E(j)[m]

one defines the class α ∪β as the following composite:

Σ∞ Λ(X)
δ∗−→ Σ∞ Λ(X)⊗ Σ∞ Λ(X)

α⊗β−−−→ E(i)[n]⊗ E(j)[m]
µ−→ E(i+ j)[n+m].

Using this definition, one can check easily that the commutativity axiom of E implies the following
formula:

α ∪β = (−1)nm−ij .εij .β ∪α

where ε is the endomorphism of Λ introduced in Paragraph 1.3.1. In particular, if E is a Morel
motive, the product on E∗∗ is anti-commutative with respect to the first index and commutative
with respect to the second one. Note also the following result which will be used later.

10This formula was first obtained by Morel but the proof has not been published. In any case, this is a
consequence of loc. cit.

11Ring spectra have slowly emerged in homotopy theory and the terminology is not fixed. Usually, our weak

ring spectra (resp. ring spectra) are simply called ring spectra (resp. highly structured ring spectra).
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Lemma 1.4.4. Let E be a weak ring spectrum with unit η and multiplication µ. Then the following
conditions are equivalent:

(i) E is a Morel motive.
(ii) η ◦ ε = −η.

Proof. Let us remark that according to the Unit property the following equalities hold:

µ ◦ (1E ⊗ η) = 1E,

µ ◦ (1E ⊗ (η ◦ ε)) = ε⊗ E.

Thus the equivalence between (i) and (ii) directly follows from relation (1.3.2.a) characterizing
Morel motives. �

Remark 1.4.5. Of course, a ring spectrum induces a weak ring spectrum. Concretely, in the non
weak case, one requires that the diagrams of Paragraph 1.4.1 commutes in the mere category of
spectra, and not only up to weak homotopy. This makes the construction of ring spectra more
difficult than usual weak ring spectra.

1.4.6. Let us denote by Spring(S,Λ) the category of ring spectra. Because the category Sp(S,Λ) is
a complete and cocomplete monoidal category, Spring(S,Λ) is complete and cocomplete. Moreover,
the forgetful functor:

U : Spring(S,Λ)→ Sp(S,Λ)

admits a left adjoint which we denote by F . The following result appears in [CD12b, Th. 7.1.8].

Theorem 1.4.7. Assume Λ is a Q-algebra.
Then the category Spring(S,Λ) is a model category whose weak equivalences (resp. fibrations)

are the maps f such that U(f) is a weak equivalence (resp. stable fibration) in the stable model
category Sp(S,Λ) (see Par. 1.2.5).

We denote by Ho(Spring(S,Λ)) the homotopy category associated with this model category.

1.4.8. For a given Q-algebra Λ, recall the following consequences of this theorem:

(1) The pair of adjoint functors (F,U) can be derived and induces adjoint functors:

LF : DA1(S,Λ) � Ho(Spring(S,Λ)) : U

The essential image of the functor U lies in the category of weak ring spectra. However,
it is not essentially surjective on that category.

(2) As any homotopy category of a model category, the homotopy category Ho(Spring(S,Λ))
admits homotopy limits and colimits (see [Cis03, Intro. Th. 1]). In other words, any
diagram of Spring(S,Λ) admits a homotopy limit and a homotopy colimit.

1.4.9. A commutative monoid in the category C(PSh(S,Λ)) is usually called a commutative
differential graded Λ-algebra with coefficients in the abelian monoidal category PSh(S,Λ).

A N-graded commutative monoid in C(PSh(S,Λ)) is a sequence (Ei)i∈N of complexes of pre-
sheaves equipped with a unit map η : Λ→ E0 and multiplication maps µij : Ei ⊗ Ej → Ei+j for
any pair of integers (i, j) such that the following diagrams commute:

Unit: Associativity: Commutativity:

Ei
1⊗η // Ei ⊗ E0

µi,0

��

Ei ⊗ Ej ⊗ Ek
1⊗µjk //

µij⊗1

��

Ei ⊗ Ej+k

µi,j+k

��

Ei ⊗ Ej
µij

((
γij

��

Ei+j

Ei Ei+j ⊗ Ek
µi+j,k // Ei+j+k Ej ⊗ Ei

µj,i

66

where γij is the obvious symmetry isomorphism. We then define bigraded cohomology groups for
any smooth S-scheme X and any couple of integers (n, i):

Hn(X,Ei) = Hn(Ei(X)).
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The above monoid structure induces an exterior product on these cohomology groups:

Hn(X,Ei)⊗Hm(Y,Ej)→ Hn+m(X ×S Y,Ei+j), (x, y) 7→ x× y.

Given any smooth S-scheme X, we let p : X ×Gm → X be the canonical projection and consider
for the next statement the following split exact sequence:

0→ Hn(X,Ei)
p∗−→ Hn(X ×Gm, Ei)

πX−−→ H̃n(X ×Gm, Ei)→ 0 ,

where H̃n(X ×Gm, Ei) := Coker(p∗) and πX is the canonical projection.

Proposition 1.4.10. Suppose given a N-graded commutative monoid (Ei)i∈N in C(PSh(S,Λ)) as
above together with a section c of E1[1] over Gm satisfying the following properties:

(1) Excision.– For any integer i, Ei is Nis-local.
(2) Homotopy.– For any integer i, Ei is A1-local.
(3) Stability.– Let c̄ be the image of c in H1(Gm, E1). For any smooth S-scheme X and any

pair of integers (n, i) the following map

Hn(X,Ei)→ H̃n+1(X ×Gm, Ei+1), x 7→ πX
(
x× c̄

)
is an isomorphism.

Then there exists a ring spectrum E which is a stably fibrant Tate spectrum together with canonical
isomorphisms

(1.4.10.a) HomDA1 (S,Λ)(Σ
∞ Λ(X),E(i)[n]) ' Hn(X,Ei)

for integers (n, i) ∈ Z × N, functorial in the smooth S-scheme X and compatible with products.
Moreover, E depends functorially on (Ei)i∈N and c.

Assume Λ is a Q-algebra. Let u : Gm → Gm be the inverse map of the group scheme Gm, and
denote by c̄′ the image of c in the group H̃1(Gm, E1). Then, under the above assumptions, the
following conditions are equivalent:

(i) The Tate spectrum E is a Morel motive ( i.e. defines an object in DMB(S,Λ), Def. 1.3.2
and Par. 1.3.3).

(ii) The following equality holds in H̃1(Gm, E1): u∗(c̄′) = −c̄′.

Remark 1.4.11. (1) The two last properties should be called the Orientation property. In
fact, they can be reformulated by saying that E is an oriented ring spectrum (cf [CD12b,
Cor. 14.2.16]). Recall also this is equivalent to the existence of a canonical morphism of
groups:

Pic(X)→ H2(X,E1)

which is functorial in X (and even uniquely determined by c).
(2) The Stability axiom can be reformulated by saying that for any x ∈ Hn+1(X ×Gm, Ei+1)

there exists a unique couple (x0, x1) ∈ Hn+1(X,Ei+1)×Hn(X,Ei) such that:

x = p∗(x0) + x1 × c̄′.

(3) Though we start with a positively graded complex (Ei)i∈N we get a cohomology theory
which possibly has negative twists. These negative twists are given by the following short
exact sequence for i > 0:

0→ En,−i(X)→ Hn(X ×Gim, E0)→ Hn(X ×Gi−1
m , E0)→ 0

where the epimorphism is given by the sum of the inclusions

Gi−1
m → Gim

corresponding to set one of the coordinates of the target to 1.

Proof. We define the Tate spectrum E to be the complex of presheaves Ei in degree i with trivial
action of Σi. The section c defines a map of presheaves:

c′ : Λ(1)→ Λ(Gm)[−1]
c[−1]−−−→ E1
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where the first map is given by the canonical inclusion. We define the suspension map of E in
degree i as the following composite:

σi : Ei(1) = Ei ⊗ Λ(1)
1⊗c′−−−→ Ei ⊗ E1

µi,1−−→ Ei+1.

One deduces from the commutative diagram called “Commutativity” of Paragraph 1.4.9 that the
induced map Ei(r)→ Ei+r is Σi × Σr-equivariant. So that E is indeed a Tate spectrum.

By definition, Assumptions (1) and (2) exactly say that E is Nis-local and A1-local. It remains
to check it is an Ω-spectra. In other words, the map obtained by adjunction from σi

σ′i : Ei → R Hom(Λ(1), Ei+1)

is an isomorphism in Deff
A1(S,Λ). It is sufficient to check that for any smooth S-scheme X and any

integer n ∈ Z, the induced map :

σ′i∗ : Hom(Λ(X), Ei[n])→Hom(Λ(X),R Hom(Λ(1), Ei+1[n])

= Hom(Λ(X)⊗ Λ(1), Ei+1[n]),

where the morphisms are taken in Deff
A1(S,Λ), is an isomorphism. According to the definition, we

can compute this map as follows:

(1.4.11.a) Hom
(
Λ(X), Ei[n]

)
→ Hom

(
Λ(X)⊗ Λ(1), Ei+1[n]

)
, x 7→ x× c̄′

where c̄′ is the class of the map c′ in Deff
A1(S,Λ). Using the fact Ei is Nis-local and A1-local, the

source of this map is isomorphic to Hn(X,Ei). Similarly, the group of morphisms

Hom
(
Λ(X)⊗ Λ(Gm), Ei+1[n+ 1]

)
is isomorphic to Hn+1(X × Gm, Ei+1). Under this isomorphism, the target of the above map

corresponds to H̃n+1(X × Gm, Ei+1). Under these identifications, c̄′ = πX(c̄). Thus, the fact σ′i
is an isomorphism directly follows from Assumption (3).

According to this construction, the maps η and µij induces a structure of a ring spectrum on E
(using in particular the description of the tensor product of spectra recalled in Paragraph 1.2.3).

The isomorphism (1.4.10.a) follows using the adjunction (1.2.5.a) and the relation (1.2.5.b)
applied to the Tate Ω-spectrum E. The fact it is functorial and compatible with products is
obvious from the above construction.

Let us finally consider the remaining assertion. Note that according to what was just said, the
class c̄′ introduced in the beginning of the proof coincides with the class c̄′ which appears in the
statement of the proposition. Under the isomorphism (1.4.10.a), the canonical isomorphism:

HomDA1 (S,Λ)(Λ,E)→ HomDA1 (S,Λ)(Λ(1),E(1))

corresponds to an isomorphism of the form

HomDeff
A1 (S,Λ)(Λ, E0)→ HomDeff

A1 (S,Λ)(Λ(1), E1) = H̃1(Gm, E1)

which is a particular case of the isomorphism (1.4.11.a) considered above. Thus, it sends the unit
map η of E to the class c̄′. Thus the equivalence of conditions (i) and (ii) follows from Lemma
1.4.4. �

Remark 1.4.12. This proposition is an extension of the construction given in [CD12a, sec. 2.1]. The
main difference is that we consider here theories in which the different twists are not necessarily
isomorphic. By contrast, we require the datum of a stability class here whereas we do not need a
particular choice in op. cit.

Note also that a similar extension has appeared in [HS10] applied to Deligne cohomology.
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2. Motivic ring spectra

In this section we introduce one of the central notion of motivic homotopy theory, that of motivic
ring spectrum. Our primary aim is to prove that to such an object is associated a Bloch-Ogus
cohomology theory, a result which has not yet appeared in the literature of motivic homotopy
theory. Moreover, we extend the formalism of Bloch-Ogus by proving many more properties,
relying on some of the main constructions of motivic homotopy theory ([Dég08], [Ayo07] and
[CD12b]). In the next section we will give several examples of motivic ring spectra, among them
the motivic ring spectrum representing the rigid syntomic cohomology.

We fix a base scheme S (noetherian and finite dimensional) and Λ a Q-algebra.

2.1. Gysin morphisms and regulators.

Definition 2.1.1. A motivic ring spectrum (over S) is a ring spectrum E which is also a Morel
motive. In particular it is an object of DMB(S,Λ).

If X is an S-scheme, we will denote by

En,i(X) := HomDMB(S,Λ)(M(X),E(i)[n])

the associated bi-graded cohomology groups.

Remark 2.1.2. (1) In the current terminology of motivic homotopy theory, what we call a
motivic ring spectrum should be called an oriented motivic ring spectrum (see also Remark
1.4.11). This abuse of terminology is justified as we will never consider non oriented ring
spectra in this work.

(2) In the previous section, we have seen that there exists a stronger notion of ring spectrum,
that of stably fibrant Tate spectrum. The ring spectra that we will construct will always
satisfies this stronger assumption. Moreover, given a ring spectrum in the sense of the
above definition, it is always possible to find a stably fibrant Tate spectrum which is
isomorphic in DMB(S) to the first given one (according to Theorem 1.4.7). On the other
hand, this stronger notion will not be used in this section that is why we consider above
the simpler notion. The stronger notion will be needed in Section 3.8.

2.1.3. Recall that Beilinson motivic cohomology for smooth S-schemes is the cohomology repre-
sented by the unit object of DMB(S) = DMB(S,Q):

Hn,i
B (X) := HomDMB(M(X),1(i)[n]).

This group can also be described as the i-graded part for the γ-filtration of algebraic rational
K-theory:

Hn,i
B (X) = griγ K2i−n(X)Q .

See [CD12b, 14.2.14].
By construction, the ringed cohomology E∗∗ admits a canonical action of Beilinson motivic

cohomology H∗∗B . Concretely, for any smooth S-scheme X and any couple of integers (n, i), the
unit map 1→ E induces a canonical morphism

(2.1.3.a) σE : Hn,i
B (X) = HomDMB(M(X),1(i)[n])→ HomDMB(M(X),E(i)[n]) = En,i(X)

which is compatible with pullbacks and products. This is the higher cycle class map (or equiva-
lently the regulator) with values in the E-cohomology. Note also that this map can be represented
in the category DA1(S,Q) as a morphism of ring spectra:

σE : HB → E (by abuse of notation we use the same symbol)

which is unique according to [CD12b, 14.2.16].
When n = i, it gives in particular the (usual) cycle class map:

(2.1.3.b) σE : CHn(X)→ E2n,n(X)

which is compatible with pullbacks and products of cycles as defined in [Ful98].
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2.1.4. A motivic ring spectrum E, considered as an object of DA1(S), is oriented (see Remark
1.4.11). Thus, one can apply to it the orientation theory of A1-homotopy theory (see [Dég11] in
the arithmetic case).

This implies that E∗∗ admits Chern classes, which are nothing else than the image of the Chern
classes in Chow theory through the cycle class map, and satisfies the projective bundle formula
(see [Dég11, 2.1.9]). One also gets a Chern character map in DA1(S,Q):

chsyn : KGLQ
ch−→ ⊕i∈ZHB(i)[2i]

σ−→ ⊕i∈ZE(i)[2i]

where KGLQ is the ring spectrum representing rational algebraic K-theory over R and ch is
the isomorphism of [CD12b, 14.2.7(3)]. This map induces the usual higher Chern character (see
[Gil81]) for any smooth S-scheme X:

chn : Kn(X)Q →
∏
i∈N

E2i−n,i(X).

2.1.5. Given a motivic ring spectrum E, we can define a (cohomological) realization functor of
DMB(R):

E(−) : DMB(R)op → Qp-vs, M 7→ HomDMB(S)(M,E).

This shows that the E-cohomology of a smooth S-scheme X inherits the functorial structure of
the motive of X.

In particular, given a projective morphism of smooth S-schemes f : Y → X, there exists a
Gysin morphism on motives:

M(X)→M(Y )(−d)[−2d]

where d is the dimension of f . This was constructed in [Dég08] and several properties of this
Gysin morphism were proved there. Thus, after applying the functor E(−) above, one gets:

Theorem 2.1.6. Consider the above notations. One can associate to f a Gysin morphism in
syntomic cohomology:

f∗ = E(f∗) : En,i(Y )→ En−2d,i−d(X).

Moreover, one gets the following properties:

(1) ([Dég08, 5.14]) For any composable projective morphisms f, g, (fg)∗ = f∗g∗.
(2) ( projection formula, [Dég08, 5.18]) For any projective morphism f : Y → X and any pair

(x, y) ∈ E∗,∗(X)× E∗,∗(Y ), one has:

f∗(f
∗(x).y) = x.f∗(y).

(3) ( Excess intersection formula, [Dég08, 5.17(ii)]) Consider a cartesian square of smooth
S-schemes:

Y ′
q //

g ��

X ′

f��
Y

p // X

such that p is projective. Let ξ/Y ′ be the excess intersection bundle12 associated with that
square and let e be its rank.
Then for any y ∈ E∗,∗(Y ), on gets:

f∗p∗(y) = q∗(ce(ξ).g
∗(y)).

(4) For any projective morphism f : Y → X, the following diagram is commutative:

Hn,i
B (Y )

f∗ //

σsyn

��

Hn−2d,i−d
B (X)

σsyn

��
En,i(Y )

f∗ // En−2d,i−d(X) .

12Recall from loc. cit. that one defines ξ as follows: let us choose a closed embedding i : Y → P into a projective
bundle over X and let Y ′ → P ′ be its pullback over X′. Let N (resp. N ′) be the normal vector bundle of Y in

P (resp. Y ′ in P ′). Then, as the preceding square is cartesian, there is a monomorphism N ′ → g−1(N) of vector

bundles over Y ′ and one puts: ξ = g−1(N)/N ′.
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Remark 2.1.7. • With the notation of Point (3) recall that ξ has dimension n−m where n
(resp. m) is the dimension of p (resp. q). In particular, when the square is transverse i.e.
n = m, one gets the more usual formula: f∗p∗ = q∗g

∗.
• Point (2) can simply be derived from the preceding formula applied to the graph morphism
γ : Y → Y ×S X given that γ∗ is compatible with products.

• Point (4) shows in particular that, when i : Z → X is a closed immersion, i∗(1) = σE([Z])
is the fundamental class of Z in X. If Z is a smooth divisor, corresponding to the line
bundle L/X, one gets in particular:

i∗(1) = c1(L).

This property determines uniquely the Gysin morphism in the case of a closed immersion
(see [Dég08] or [Pan09]).

When p : P → X is the projection of a projective bundle of rank n and canonical line
bundle λ, one gets, again applying Point (4):

p∗(c1(λ)i) =

{
1 if i=n

0 otherwise

This fact, together with the projective bundle formula in syntomic cohomology, determines
uniquely the morphism p∗.

By construction, the Gysin morphism f∗ for any projective morphism f is completely
determined by the two above properties.

• For syntomic cohomology, Point (4) was conjectured by Besser [Bes12, Conjecture 4.2]
(in the case of proper morphisms) and Theorem 1.1 in loc. cit. is conditional to the
conjecture. The latter result concerns the regulator of a proper and smooth surface S
over R. We also note that Point (4) has already been used (in the projective morphism
case, although stated for proper maps) in [Lan11, p. 505] but the references given there
is a draft of [CCM12] which turns to be different from the published version and does not
contain the above statement, neither its proof.

Example 2.1.8. Let f : Y → X be a finite morphism between smooth connected S-schemes. Let
d be the degree of the extension of the corresponding function fields. Then one gets the degree
formula in E-cohomology: for any x ∈ E∗,∗(X),

f∗f
∗(x) = d.x.

Indeed, according to 2.1.6(1),

f∗f
∗(x) = f∗(1.f

∗(x)) = f∗(1).x.

Then one gets f∗(1) = d from 2.1.6(4) and the degree formula in Beilinson motivic cohomology.

As a corollary of Point (4) of the preceding theorem, one obtains the Riemann-Roch formula
in E-cohomology.

Corollary 2.1.9. Let f : Y → X be a projective morphism between smooth S-schemes. Let τf be
the virtual tangent bundle of f in K0(X): τf = [TX ] − [TY ], the difference of the tangent bundle
of X/S with that of Y/S. Then for any element y ∈ Kn(Y )Q, one gets the following formula:

chE
(
f∗(y)

)
= f∗

(
td(τf ). chE(y)

)
where td(τf ) is the Todd class of the virtual vector bundle τf in E-cohomology (defined for example
as the image of the usual Todd class in Chow groups by the cycle class map).

In fact, this corollary is deduced from the Riemann-Roch formula in motivic cohomology after
applying to it the higher cycle class and applying Point (4) of the previous theorem.
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2.2. The six functors formalism and Bloch-Ogus axioms. In this section, we will recall
some consequences of Grothendieck six functors formalism established for Beilinson motives (see
[CD12b, 2.4.50] for a summary) and apply this theory to the spectra considered in this paper. We
will consider only separated S-schemes of finite type over S. We will also consider an abstract
object E of DMB(S).

2.2.1. We associate with E four homology/cohomology theories defined for an S-scheme X with
structural morphism f and a pair of integers (n, i) as follows:

Cohomology En,i(X) = Hom(1S , f∗f
∗E(i)[n])

Homology En,i(X) = Hom(1S , f!f
!E(−i)[−n])

Cohomology with compact support En,ic (X) = Hom(1S , f!f
∗E(i)[n])

Borel-Moore homology EBM
n,i (X) = Hom(1S , f∗f

!E(−i)[−n])

We will use the terminology c-cohomology (resp. BM-homology) for cohomology with compact
support (resp. Borel-Moore homology).

Note that these definitions, applied to the unit object 1 ofDMB(S), yield the four corresponding
motivic theories. Also, these definitions are (covariantly) functorial in E. In particular, if E admits
a structure of a monoid in DMB(S) (i.e. E is a ring spectrum), the unit map η : 1 → E yields
regulators in all four theories.

When X/S is proper, as f∗ = f!, one gets identifications:

En,i(X) = En,ic (X), EBM
n,i (X) = En,i(X).

2.2.2. Functoriality properties.– We consider a morphism of S-schemes:

Y
f //

q ��

X

p~~
S

Using the adjunction map adf : 1 → f∗f
∗ (resp. ad′f : f!f

! → 1), we immediately obtain that

cohomology is contravariant (resp. homology is covariant) by composing on the left by p∗ (resp.
p!) and on the right by p∗ (resp. p!).

When f is proper, f! = f∗. Using again adf , ad′f , one deduces that c-cohomology (resp.

BM-homology) is contravariant (resp. contravariant) with respect to proper maps.
When f is smooth of relative dimension d, one has the relative purity isomorphism:

f ! ' f∗(d)[2d]

(see in [CD12b]: Th. 2.4.50 for the statement and Sec. 2.4 for details on relative purity). In
particular, one derives from adf and ad′f the following maps:

f∗ : En,ic (X)→ En−2d,i−d
c (Y ), f∗ : EBM

n,i (X)→ EBM
n+2d,i+d(Y ).

Finally, when f is proper and smooth of relative dimension d one gets in addition:

f∗ : En,i(X)→ En−2d,i−d(Y ), f∗ : En,i(X)→ En+2d,i+d(Y ).

Let us summarize the situation:

theory covariance (degree) contravariance (degree)

Cohomology smooth proper, (-2d,-d) any
Homology any smooth proper, (+2d,+d)
Cohomology with compact support smooth, (-2d,-d) proper
Borel-Moore homology proper smooth, (+2d,+d)

Remark 2.2.3. The fact that the functorialities constructed above are compatible with composition
is obvious except when a smooth morphism is involved. This last case follows from the functoriality
of the relative purity isomorphism proved by Ayoub in [Ayo07].
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When considering one of the four theories associated with E, one can mix the two kinds of
functoriality in a projection formula as usual. In fact, given a cartesian square:

Y ′
g //

q ��

X ′

p��
Y

f // X

such that f is proper and smooth (or f smooth and g proper when considering Ec or EBM), one
obtains respectively:

• f∗p∗ = q∗g
∗ for the two homologies,

• p∗f∗ = g∗q
∗ for the two cohomologies.

This is a lengthy check coming back to the definition of the relative purity isomorphism. The
essential fact is that

g−1(TY/X) = TY ′/X′

where TY/X (resp. TY ′/X′) is the tangent bundle of f (resp. g).

2.2.4. Products.– Let us now assume that E is a ring spectrum, with unit map η : 1S → E and
product map µ : E⊗ E→ E.

Of course, for any S-scheme X with structural map f , we can define a product on cohomology,
sometimes called the cup-product:

En,i(X)⊗ Em,j(X)→ En+m,i+j(X), (x, y) 7→ xy = x ∪ y;

given cohomology classes

x : 1X → f∗E(i)[n], y : 1X → f∗E(j)[m],

we define xy as the following composite map:

1X
x⊗y−−−→ f∗(E)(i)[n]⊗ f∗(E)(j)[m] = f∗(E⊗ E)(i+ j)[n+m]

µ−→ f∗(E)(i+ j)[n+m].

This product is obviously commutative and associative. Note one can also define an exterior
product on cohomology as follows:

En,i(X)⊗ Em,j(Y )→ En+m,i+j(X ×S Y ), (x, y) 7→ p∗1(x).p∗2(y)

where p1 (resp. p2) is the projection X ×S Y/X (resp. X ×S Y/Y ).
One can also define exterior products on c-cohomology. Consider a cartesian square:

X ×S Y
f ′ //

g′ �� h
$$

Y
g
��

X
f
// S

of separated morphisms of finite type. We define the following product on c-cohomology:

En,ic (X)⊗ Em,jc (Y )→ En+m,i+j
c (X ×S Y ), (x, y) 7→ x× y

which associates to any maps

x : 1S → f!f
∗E(i)[n], y : 1S → g!g

∗E(j)[m],

the following composite map x× y:

1S
x⊗y−−−→f!f

∗(E)(i)[n]⊗ g!g
∗(E)(j)[m]

' f!

(
f∗(E)(i)[n]⊗ f∗g!g

∗(E)
)
(i+ j)[n+m]

' f!

(
f∗(E)(i)[n]⊗ g′!f ′∗g∗(E)

)
(i+ j)[n+m]

' f!g
′
!

(
g′∗f∗(E)(i)[n]⊗ f ′∗g∗(E)

)
(i+ j)[n+m]

= h!h
∗(E⊗ E)(i+ j)[n+m]

µ−→ h!h
∗(E)(i+ j)[n+m]

where the first and third isomorphisms follow from the projection formula [CD12b, 2.4.50(v)] and
the second one from the exchange isomorphism [CD12b, 2.4.50(iv)].
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One can check the following formulas:

(x× y)× z = x× (y × z), x× y = y × x

through the respective isomorphisms

(X ×S Y )×S Z ' (X ×S Y )×S Z,X ×S Y ' Y ×S X.

Further, because c-cohomology is contravariant with respect to proper morphism, given any
S-schemes X (separated of finite type), the diagonal embedding δ : X → X ×S X allows to define
an inner product on c-cohomology:

En,ic (X)⊗ Em,jc (X)→ En+m,i+j
c (X), (x, x′) 7→ δ∗(x× x′).

When X/S is proper, one can check this product coincides with cup-product on cohomology.

Remark 2.2.5. Let f : Y → X be a proper smooth morphism. According to the projection formulas
established in Remark 2.2.3, one can check that for any couple (y, x) either in En,i(Y )×Em,j(X)
or in En,ic (Y )× Em,jc (X), one gets the following usual projection formula (for products):

f∗(x.f
∗(y)) = f∗(x).y.

In fact, in each case, one uses the relevant formula of Remark 2.2.3, the external product and the
following formulas:

y × f∗(x) = (1Y ×S f)∗(y × x), f∗(y)× x = (f ×S 1X)∗(y × x).

2.2.6. Cap product.– One can extend the cohomology theory associated with E to a theory with
support. Given any closed immersion of S-schemes:

Z

g %%

i // X,

fyy
S

one puts:

En,iZ (X) = Hom(i∗(1Z), f∗E(i)[n]) = Hom(1Z , i
!f∗E(i)[n]).

This theory satisfies all the usual properties. We refer the reader to [Dég11, §1.2] for a detailed
account.

Assuming again E is a ring spectrum with product map µ : E⊗ E→ E, one defines, following
Bloch and Ogus,[BO74], the cap-product with supports:

EBM
n,i (X)⊗ Em,jZ (X)→ EBM

n−m,i−j(Z), (x, z) 7→ x ∩ z.

Let us first introduce classical pairing of functors (see [Del77, IV, §1.2]): given any objects A and
B of DMB(S), one considers the following composite map

f!(f
!(A)⊗ f∗(B))

Ex−−→ [f!f
!(A)]⊗B

ad′f−−→ A⊗B

where the first map is the isomorphism of the projection formula ([CD12b, 2.4.50]) and the second
one is the counit of the adjunction (f!, f

!). One thus deduces by adjunction the following pairing

f !(A)⊗ f∗(B)
ηf−→ f !(A⊗B).

Thus, given maps

x : 1X → f !(E), z : i∗(1Z)→ f∗(E)

one defines x ∩ z from the following composite map:

i∗(1Z)
x⊗z−−−→ f !(E)⊗ f∗(E)

ηf−→ f !(E⊗ E)
µ−→ f !(E)

using i∗ = i!, the adjunction (i!, i
!) and i!f ! = g!.
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Remark 2.2.7. Consider a cartesian square of S-schemes

T
k //

g
��

Y

f
��

Z
i // X

such that i is a closed immersion and f is proper. Then, for any couple (y, z) ∈ EBM
n,i (X)⊗Em,jZ (X),

one obtains the following formula:

f∗(y) ∩ z = g∗(y ∩ f
∗(z)).

2.2.8. Suppose again E is a ring spectrum with unit map η : 1S → E.
Let f : X → S be a smooth S-scheme of relative dimension d. Then, according to [CD12b,

2.4.50(iii)], one obtains a canonical isomorphism of functors:

pf : f ! → f∗(d)[2d].

In particular, one gets a canonical map

ηX : 1X = f∗(1S)
f∗(η)−−−→ f∗(E)

p−1
f−−→ f !(E)(−d)[−2d]

which corresponds to a homological class ηX ∈ EBM
2d,d(X). The following result is now a tautology:

Proposition 2.2.9. Consider the above assumptions, and let Z ⊂ X be any closed subset. Then
the following map:

En,iZ (X)→ EBM
2d−n,i−n(Z), z 7→ ηX ∩ z

is an isomorphism.

One can now summarize some of the main properties we have proved so far as follows:

Corollary 2.2.10. The couple of functors
(
E∗∗, EBM

∗∗
)

form a Poincaré duality theory with sup-
ports in the sense of Bloch and Ogus ([BO74, Def 1.3]).

This is the case in particular for syntomic cohomology and syntomic BM-homology.

2.2.11. Descent theory.– Recall (see [CD12b, §3.1]) that a diagram of S-schemes (X , I) is the data
of a small category I and a functor X : I → S . A morphism of diagrams ϕ = (α, f) : (X , I) →
(Y, J) is the data of a functor f : I → J and a natural transformation α : X → f∗(Y) where
f∗(Y) = Y ◦ f .

Accorded to [CD12b, §3.1], the fibered triangulated category DMB can be extended to the
category of diagrams. Moreover, for any morphism of diagrams ϕ : (X , I) → (Y, J), one has an
adjoint pair of functors:

ϕ∗ : DMB(Y, J) � DMB(X , I) : ϕ∗.

Consider a diagram of S-schemes (X , I) and the canonical morphism ϕ : (X , I)→ (S, ∗) where ∗
is the final category. Then one defines the cohomology of (X , I) as:

En,i(X , I) = Hom(1, ϕ∗ϕ
∗(E)(i)[n]).

This is contravariant with respect to morphisms of diagrams.
In particular one has extended the cohomology E∗,∗ to simplicial S-schemes. The h-topology

was introduced by Voevodsky in [Voe96]. Recall that a h-cover f : Y → X of S-schemes is a
universal topological epimorphism (e.g. faithfully flat maps, proper surjective maps). Then the
h-descent theorem for Beilinson motives ([CD12b, 14.3.4]) states the following:

For any quasi-excellent S-scheme X and any hypercover p : X → X for the h-topology, the
canonical map

p∗ : En,i(X)→ En,i(X )

is an isomorphism. In particular, one gets the usual spectral sequence:

Ep,q1 = Ep,i(Xq)⇒ Ep+q,i(X).
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Remark 2.2.12. As already remarked in [CD09a], the preceding descent theory together with De
Jong resolution of singularities, shows that in the case where S is the spectrum of a field (non
necessarily perfect), the cohomology E∗,∗ is uniquely determined by its restriction to smooth
schemes.

3. Syntomic spectrum

In this section we construct several motivic ring spectra (see Def. 2.1.1): EFdR,Erig,Eφ,Esyn.
First for a field K of characteristic zero we construct EFdR representing the filtered part of the de
Rham cohomology of a K-scheme. i.e.

En,iFdR(X) := HomDA1 (η,Q)(Σ
∞Q(X),EFdR(i)[n]) ' F iHn

dR(X) .

Then we define Erig which represents the rigid cohomology of Berthelot. This was already proved
in [CD12a] in a different way. For both EFdR and Erig we use the criteria of Proposition 1.4.10.

Finally we get a motivic ring spectrum Esyn for the rigid syntomic cohomology as a homotopy
limit of a diagram of ring spectra.

3.1. Cosimplicial tools.

3.1.1. Let ∆ be the category of finite ordered sets [n] := {0, ..., n} as objects and monotone
nondecreasing functions as morphisms. Let δi(n) : [n − 1] → [n] (resp. σi(n) : [n] → [n − 1])
be the usual13 (co)face (resp. (co)degeneracy) map. In case there is no ambiguity we will simply
write δi, σi. Given a category C, a simplicial (resp. cosimplicial) object of C is a functor from ∆◦

(resp. ∆) to C.
For instance let An = Q[T0, ..., Tn]/(

∑
Ti− 1), then this is a simplicial Q-algebra in an obvious

way. It follows that the associated differential graded algebra (dga) of Kähler differentials

(3.1.1.a) ωn := Ω•An/Q n ≥ 0

is a simplicial dga over Q. We will denote by δi = δ∗i (resp. σi = σ∗i ) the structural morphisms.
Now let M be a cosimplicial abelian group and sM the associated simple complex (sM i = M [i]

and the differentials are the alternate sums of the coface morphisms). Its standard normalization
NM is the subcomplex of sM s.t. NqM :=

⋂
i ker(σi) ⊂ Mq. Then inclusion NM → sM is

a homotopy equivalence. Now if M is also a cosimplicial commutative monoid the Alexander-
Whitney product14 gives a (differential graded) monoid structure on sM and NM , but this is not
necessarily (graded) commutative. Thus we consider the following construction due to Thom and
Sullivan. Let M be a cosimplicial dga, we define

ÑqM ⊂
∏
m

ωqm ⊗Mm

as the submodule whose elements are sequences (xm)m≥0 such that

(Id⊗δi)xm = (δi ⊗ Id)xm+1 , (σi ⊗ Id)xm = (Id⊗σi)xm+1

and define the differentials D : ÑqM → Ñq+1M by D = ((−1)q Id⊗d) + Id⊗∂), where d (resp.
∂) is the differential of M (resp. ωm). With the above notation if M is further a cosimplicial

commutative monoid then ÑM is a commutative monoid too. Namely we can define

(3.1.1.b) ÑM ⊗ ÑM → ÑM

induced by (α⊗m)⊗ (α′ ⊗m′) = α ∧ α′ ⊗ (m ·m′).
Moreover the complex ÑM is quasi-isomorphic to the standard normalization NM (and then

to sM).15

13i.e. the image of δi(n) is [n] \ {i}.
14This is given as follows. Let δ− : [q] → [q + q′] (resp. δ+ : [q′] → [q]) the map with image {0, 1, ..., q} (resp.

{q, q + 1, ..., q + q′}), then define a ∗ b := δ−(a) · δ+(q).
15The isomorphism is induced by the integration map

∫
: ω•n ⊗Mn → Q[−n]⊗Mn defined by

(dT1 ∧ · · · ∧ dTn)⊗m 7→
1

n!
⊗m .
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We can extend the above constructions to the setting of cosimplicial dg abelian groups. Given

such an M = Mpq (where q is the cosimplicial parameter), then sM (resp. NM , ÑM) is naturally
a double complex and we can apply the total complex functor, denoted by tot, to obtain a dg
abelian group.

Now we are ready to state a technical result well known to the specialists.

Proposition 3.1.2 (cf. [HS87],[HY99, Appendix]). Let M be a cosimplicial (commutative) dga

over Q then there exists a canonical (commutative) dga ÑM and a quasi-isomorphism
∫

: ÑM →
sM inducing an isomorphism of (commutative) dg algebras in cohomology H(

∫
) : H(ÑM) →

H(sM).

3.1.3. (Godement resolutions) Let u : P → X be a morphism of Grothendieck sites and let P∼

(resp. X∼) be the category of abelian sheaves on P (resp. X). Then we have a pair of adjoint
functors (u∗, u∗), where u∗ : X∼ → P∼, u∗ : P∼ → X∼. For any object F of X∼ we can define a
co-simplicial object B∗(F) whose component in degree n is (u∗u

∗)n+1(F).16

Proposition 3.1.4. Let u : P → X a morphism of sites and F a complex of sheaves on X. If u∗

is exact and conservative, then

(1) The complex GdmP (F) := sB∗(F) is a functorial flask resolution of F
(2) If F is a Q-linear sheaf, the Thom-Sullivan normalization G̃dmP (F) := ÑB∗(F) is a

functorial resolution of F ;

(3) If F is a sheaf of (commutative) dga over Q, then the complex G̃dmP (F) = ÑB∗(F) is a

sheaf of commutative dga and the canonical isomorphism H∗(X,F) ∼= H∗(Γ(X G̃dmF))
is compatible with respect to the multiplicative structure.

Proof. Since u∗ is exact and conservative, to show that the canonical map bF : F → sB∗(F) is a
quasi-isomorphism is sufficient to prove that u∗bF is a quasi-isomorphism. This follows from the
fact that the augmented complex

u∗F → u∗B0(F)→ u∗B1(F)→ · · ·
is null-homotopic: the homotopy hi : u∗(u∗u

∗)i(F) → u∗(u∗u
∗)i−1(F) is induced by the counit

u∗u∗ → Id and one checks easily that Id = di−1 ◦hi+hi+1 ◦di, where di is given by the alternating
sum of cofaces. The rest follows directly from Prop. 3.1.2 and the existence of a family of canonical
maps

∪n : Bn(F )⊗Bn(G)→ Bn(F ⊗G)

compatible with the cosimplicial structure. We leave to the reader to check that if F∗ is further
a (commutative) dga on X∼ then B∗(F∗) is a cosimplicial (commutative) dga17. �

3.1.5 (Enough points). We will use the above construction in the case X is the site associated
to a scheme or a dagger space (in the case of a dagger space we take the site associated to its
G-topology). In both cases we let P be the category Pt(X) of site-theoretical points of X. For a
general X the canonical map u : Pt(X)→ X is not conservative. The latter property is guaranteed
in the two cases we are interested in. It suffices to exhibit a subcategory C of Pt(X) (with the
discrete topology) such that u restricted to C is conservative. When X is associated to a scheme

16The cosimplicial structure is defined as follows. First let η : IdX∼ → u∗u∗ and ε : u∗u∗ → IdP∼ be the
natural transformations induced by adjunction.

Endow Bn(F) := (u∗u∗)n+1(F) with co-degeneracy maps

σni := (u∗u
∗)iu∗εu

∗(u∗u
∗)n−1−i : Bn(F)→ Bn−1(F) i = 0, ..., n− 1

and co-faces

δn−1
i := (u∗u

∗)iη(u∗u
∗)n−i : Bn−1(F)→ Bn(F) i = 0, ..., n .

17In fact one needs to take care of the signs:

∪abn : Bn(Fa)⊗Bn(Fb)→ Bn(Fa ⊗Bn(Fb)) , ∪abn = (−1)na ∪n .
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(resp. a dagger space) we let C be the category of its Zariski points (resp. its Berkovich or adic
points). This is enough as explained in [CCM12, § 3] or [Tam11, § 3].

From now on we will simply write G̃dm instead of G̃dmPt(X) with X as above.

3.2. De Rham cohomology.

3.2.1 (The Hodge Filtration). We recall some well known facts about algebraic de Rham coho-
mology (see for instance [Jan90]). Let K be a field of characteristic zero and X be a smooth and
algebraic K-scheme. Fix a compactification g : X → X̄ such that the complement D = X̄ \ X
is a normal crossing divisor18 . Then consider the complex Ω•

X̄/K
〈D〉 of differential forms on

X̄ with logarithmic differential poles along D. The natural inclusion Ω•
X̄/K
〈D〉 ⊂ g∗Ω

•
X/K is a

quasi-isomorphism and we define the Hodge filtration on the de Rham cohomology of X by

F iHn
dR(X/K) := Hn(X̄, F iΩ•X̄/K〈D〉)

where F iΩ•
X̄/K
〈D〉 is the stupid filtration.

A remarkable result of Deligne says that (for K = C) the Hodge filtration does not depend on
the chosen compactification. Moreover given a morphism f : X → Y of smooth algebraic schemes
over C the induced morphism on de Rham cohomology is strictly compatible w.r.t the Hodge
filtrations19. Then the same holds for Hn

dR(X/K) where K ⊂ C is a field of characteristic zero.

Proposition 3.2.2. Let X be a smooth K-scheme.

(1) For any normal crossing compactification X̄ of X the resolution G̃dm(Ω•
X̄/K
〈D〉) (no-

tation as in § 3.1.5) gives a sheaf of filtered commutative dga20 and F iHn
dR(X/K) ∼=

Hn(Γ(X̄, G̃dm(F iΩ•
X̄/K
〈D〉)).

(2) The following complexes

EFdR,i(X) := colimX̄ Γ(X̄, G̃dm(F iΩ•
X̄/K
〈D〉)(3.2.2.a)

E′dR(X) := colimX̄ Γ(X̄, G̃dm(g∗Ω
•
X))(3.2.2.b)

EdR(X) := Γ(X, G̃dm(Ω•X))(3.2.2.c)

are functorial in X and there are functorial quasi-isomorphisms21

EFdR,0(X)→ E′dR(X)← EdR(X)

Proof. By definition Ω•
X̄/K
〈D〉 is a commutative (filtered) dga. Let

F i G̃dm(Ω•X̄/K〈D〉) = G̃dm(F iΩ•X̄/K〈D〉) .

Then G̃dm(Ω•
X̄/K
〈D〉) is a (sheaf of) filtered commutative dga by Proposition 3.1.4. This concludes

the proof of point (1).
As the complex of sheaves Ω•

X̄/K
〈D〉 is functorial22 with respect to the pair (X,D), the same

is true for F i G̃dm(Ω•
X̄/K
〈D〉). Note that the category of normal crossing compactifications is

filtered. Hence the above colimit is quasi-isomorphic to any of its elements. What remains to
prove follows directly from the definitions. �

Example 3.2.3. Let X = P1
K \{0,∞}. By construction EFdR,1(X) is a complex starting in degree

1. Let dlog ∈ Γ(P1
K ,Ω

1
P1
K
〈0,∞〉) = H0(EFdR,1(X)[1]) = H1(EFdR,1(X)) be the section defined by

dT/T , for a local parameter T at 0. Note that the class of d log is a generator for F 1H1
dR(X) ∼= K.

We will denote it by cFdR
1 .

18Such a compactification exists by the Nagata’s compactification theorem and the result of Hironaka on the
resolution of singularities.

19A morphism f : A→ B of filtered vector spaces is strict if f(F iA) = f(A) ∩ F iB.
20Set F i G̃dm = G̃dmF i.
21We introduce E′dR since there is no natural map between EdR and EFdR,i.
22Morphisms of pairs are morphisms of commutative squares.
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Proposition 3.2.4. There exists a motivic ring spectrum EFdR whose components are the com-
plexes EFdR,i and such that

F iHn
dR(X) = HomDA1 (K,Q)(1,EFdR(i)[n]) .

Proof. By the previous Lemma the family EFdR,i forms a N-graded commutative monoid. The
dlog of the above example gives a morphism Q(Gm,K)→ EFdR,1. According to Proposition 1.4.10
we have to prove the following.

(Excision and homotopy) EFdR,i is both Nis-local and A1-local. We know that EdR is Nis/A1-
local so that the same holds for EFdR,0. The same holds for EFdR,i since the canonical maps
EFdR,i → EFdR,0 induce the Hodge filtration on cohomology. Then thanks to the strictness it is
easy to conclude (see also the paragraph following this proof).

(Stability) The cup product with dlog = dT/T induces an isomorphism

Hn(Ei(X)) ∼= Hn+1(Ei+1(Gm ×X))/Hn+1(Ei+1(X)) .

Let g : X → X̄ be a normal crossing compactification with complement D. Then Gm×X → P1×X̄
is a normal crossing compactification with complement E = {0,∞} × X̄ ∪ P1 × D. We have to
prove that ΩP1×X̄〈E〉 = p∗1ΩP1〈0,∞〉 ⊗ p∗2ΩX̄〈D〉. This can be checked locally by choosing étale

coordinates. Then it is easy to prove the filtered Künneth decomposition F i+1Hn+1
dR (Gm ×X) =

H0
dR(Gm) ⊗ F i+1Hn+1

dR (X) ⊕ H1
dR(Gm) ⊗ F iHn

dR(X) since F jHj
dR(Gm) = Hj

dR(Gm) ∼= K for

j = 0, 1. As Hj
dR(Gm) = Kd log the claim is proved.

(Orientation) This is obvious: the morphism of A1 \ {0} induced by T 7→ 1/T sends dT/T to
−dT/T as an element of H0(P1

K ,Ω
1
P1
K
〈0,∞〉) ⊂ EFdR,1(A1 \ {0}). �

3.2.5 (Variation on dagger spaces). Let K be a p-adic field (i.e. a finite extension of Qp) and
let R be its valuation ring. We define a canonical commutative dga RΓdR(X) for the de Rham
cohomology of a dagger space X over K. Consider the following algebra

Wn := {
∑
ν

aνT
ν ∈ K[[T1, ..., Tn]]|∃ρ > 1, |aν |ρ|ν| → 0} .

According to Grosse-Klönne [Gro00] a K-algebra A is a dagger algebra if it is a quotient of Wn

for some n. To such an A we can associate the spectrum of maximal points Spm(A) which is
a G-ringed space. One has a universal K-derivation of A into finite A-modules, d : A → Ω1

A/K

giving rise to de Rham complex ΩX/K on a general dagger space X . Assuming X to be smooth
we can set

Hn
dR(X ) := Hn(X ,ΩX/K)

It follows from Proposition 3.1.2 and § 3.1.5 that the complex RΓdR(X ) := Γ(X , G̃dm Ω•X/K) is a

functorial commutative dga.
Now let X be a smooth R-scheme. We can associate to it two different dagger spaces: one is

the dagger analytification (XK)† of its generic fiber; the other is the Raynaud fiber (Xw)K of the
weakly formal scheme Xw associated to X. There is a natural inclusion (Xw)K ⊂ (XK)†. Further
there is a map of sites ι : (XK)† → XK as in the classical analytification case.

3.3. Rigid cohomology. We recall the construction given by Besser as rephrased in [Tam11]
since there are some simplification. For the sake of the readers we give all the needed definitions.
We fix a a p-adic field K and denote by R (resp. k) is its valuation ring (resp. its residue field).

3.3.1. After the work Grosse-Klönne one can compute the rigid cohomology of Berthelot via
dagger spaces [Gro00]. The method is as follows. Let X be a smooth k-scheme, then we can
choose a closed embedding X → Y in a weak formal R-scheme Y having smooth special fiber Yk.
We call such an embedding a rigid pair and we denote it by (X,Y). There is a specialization map
sp : YK → Y, where YK is the generic fiber of Y. We write ]X[Y := sp−1(X), called the tube of X
in Y.



24 F. DÉGLISE, N. MAZZARI

A morphism of rigid pairs (X,Y), (X ′,Y ′) is a commutative diagram

]X[Y

sp

��

F // ]X ′[Y′

sp

��
X

f
// X ′

We denote by RP the category of rigid pairs.
The datum of a rigid pair (X,Y) is sufficient to compute the rigid cohomology of X (with K

coefficients) as follows

Hn
rig(X/K) = Hn

dR(]X[Y) = Hn(]X[Y ,Ω
•
]X[Y/K

) .

The de Rham complex Ω•]X[Y/K
is functorial in (X,Y) and its cohomology is independent up

to isomorphism of the choice of Y. Since the tube of X in Y is a smooth dagger space we get
Hn

rig(X/K) = Hn(RΓdR(]X[Y)) (see 3.2.5).

Proposition 3.3.2. (1) For any p-adic field K with residue field k there exists a ring object
RΓrig,K in the category Deff

A1(Spec k,Q) that represents rigid cohomology (with coefficients
in K): i.e. for any affine and smooth k-scheme X, there is a canonical rational commu-
tative dga RΓrig,K(X) such that Hi(RΓrig,K(X)) ∼= Hi

rig(X/K). (The same holds if we

replace the coefficient ring Q by any field L s.t. Q ⊂ L ⊂ K)

(2) Let X as above and (X,Y) be a rigid pair. Then there is a commutative dga R̃Γrig(X,Y)
together with a diagram of dga quasi-isomorphisms

RΓrig,K(X)← RΓrig(X,Y)→ RΓdR(]X[Y)

functorial in the pair (X,Y).
(3) (Base change) Let ρ : R → R′ be a finite map of complete discrete valuation rings. Let

k (resp. k′) be the residue field of R (resp. R′). Let X be a k-scheme then there is a
canonical (both in X and R) quasi-isomorphism

K ′ ⊗K RΓrig,K(X)→ RΓrig,K′(Xk′) .

The latter induces an isomorphism in Deff
A1(Spec k,Q)

RΓrig,K ⊗K K ′ → f∗(RΓrig,K′)

where f : Spec k′ → Spec k is the map induced by ρ and RΓrig,? denotes the object of point
(1).

(4) There exists a canonical σ-linear endomorphism of RΓrig,K0
(X) inducing the Frobenius on

cohomology: it is defined as the composition of

(3.3.2.a) RΓrig,K0(X)
Id⊗1−−−→ RΓrig,K0(X)⊗σ K0

b.c.−−→ RΓrig,K0(F ∗X)
rel.Frob.−−−−−−→ RΓrig,K0(X)

where b.c. stands for the base change morphism of point (3); F is the Frobenius of Spec k;
F ∗X is the base change of X via F ; the last map on the right is the relative Frobenius.

Proof. The details are given in [Bes00, 4.9, 4.21, 4.22]. Since we adopt the language of dagger
spaces there are some formal differences. For the sake of the readers we give the necessary modifi-
cations. To obtain a complex functorial in X we have to take a colimit on some filtered category.
The category of pairs (X,Y) with X fixed is not filtered. Hence we have to introduce the fol-

lowing categories. We define the set RPX (resp. RP(X,Y)) of diagrams X
f−→ X ′ → Y ′ (resp.

(f, F ) : (X,Y)→ (X ′,Y ′) morphism of rigid pairs) where (X ′,Y ′) is a rigid pair. Let RP 0
X (resp.

RP 0
(X,Y)) be the subset of RPX (resp. RP(X,Y)) with f = IdX (resp. (f, F ) = (Id, Id))

Now we can form the category SET 0
X (resp. SET 0

(X,Y)) with objects the finite subsets of

RPX (resp. RP(X,Y)) having non-empty intersection with RP 0
X (resp. RP 0

(X,Y)); morphisms are

inclusions. For instance an element of SET 0
X is a finite family of diagrams X

fa−→ X ′a → Y ′a, a ∈ A
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(finite set), such that fa0 = Id for some a0 ∈ A. To such an object we can associate the complex
RΓdR(]X[Y′A), where Y ′A =

∏
a Y ′a. The categories SET0

X and SET0
(X,X̄,P) are filtered.

Having this said we define

RΓrig,K(X) := colim
A∈SET0

X

RΓdR(]X[Y′A) RΓrig(X,Y) := colim
A∈SET0

(X,Y)

RΓdR(]X[Y′A) .

Now one can follow word by word the proof of Besser. �

Proposition 3.3.3. There exists a motivic ring spectrum Erig,K whose components are all equal
to the complex RΓrig,K and whose stability class is induced by dlog such that

Hn
rig(X/K) ∼= En,irig,K(X) := HomDA1 (k,Q)(M(X),Erig,K(i)[n]) .

Proof. We have to verify the hypothesis of Proposition 1.4.10 for the family Ei := RΓrig,K . First
we need to define a morphism of complexes Q[0] → RΓrig,K(Gm,k)(1)[1]. We argue as in the
de Rham case. Let us denote by X = Gm,R. Then the de Rham cohomology of the dagger
space (Xw)K computes the (K-linear) rigid cohomology of Xk = Gm,k and there is a canonical
map from RΓdR((Xw)K) to RΓrig,K(Xk). We can apply the construction of 3.1.4 to the inclusion
Ω1

(Xw)K/K
[−1] ⊂ Ω1

(Xw)K/K
and we obtain (as in example 3.2.3) an element dlog of RΓdR((Xw)K)

of degree 1. �

Remark 3.3.4. With the notations of point (3) of Proposition 3.3.2, one gets a canonical base
change isomorphism in DMB(k):

Erig,K ⊗K K ′
∼−−→ f∗(Erig,K′).

In the sequel, we will simply denote by Erig (resp. RΓrig) the ring spectrum Erig,K0
(resp. the

complex RΓrig,K0
).

3.4. Absolute rigid cohomology.

3.4.1. Along the lines of [Bĕı86b] and [Ban02] we are going to define the analogue of absolute
Hodge theory in the setting of rigid cohomology. Let k be a perfect field of characteristic p.
We denote by F-isoc the category of F -isocrystals (defined over k): i.e. finite dimensional K0-
vector spaces together with a σ-linear automorphism. This is a tensor category with unit object
1 given by K0 together with σ. For any I ∈ F-isoc we denote by I(n) the F -isocrystal having the
same vector space I and Frobenius multiplied by p−n. We would like to define the absolute rigid
cohomology of a k-scheme X as follows

Hn
φ (X, i) := HomDb(F-isoc)(1, RΓ(X)(i)[n])

where RΓ(X) is a complex of F -isocrystals such that Hn(RΓ(X)) = Hn
rig(X) together with its

Frobenius endomorphism. Since we do not know how to construct directly RΓ we follow the
strategy of Beilinson in loc.cit. and deduce its existence from proposition 3.3.2.

Let Cbrig be the category of bounded complexes of K0-vector spaces M together with a quasi-

isomorphism φ : Mσ = M ⊗K0,σ K0 → M . We define homotopies (resp. quasi-isomorphisms)
between objects in Cbrig to be morphisms in Cbrig such that they are homotopies (resp. quasi-

isomorphisms) of the underling complexes of K0-vector spaces. Then we can define the category
Kb

rig to be the category Cbrig modulo the null-homotopic morphisms.

Lemma 3.4.2. (1) the category Kb
rig is triangulated;

(2) the localization Kb
rig[A−1] of the category Kb

rig by the subcategory A of acyclic objects exists
and it is a triangulated category too;

(3) let Db
rig ⊂ Kb

rig[A−1] be the full subcategory of complexes whose cohomology objects (w.r.t.

the usual t-structure on complexes) are in F-isoc. Then there is a natural equivalence of
categories ι : Db(F-isoc)→ Db

rig.

Proof. We leave to the reader to check that all the arguments given in [Ban02, §§1,2] (or [CCM12,
§ 2]) can be adapted to our (much simpler) setting. We limit ourselves to make explicit the
formulas for the Hom groups in Db(F-isoc), Db

rig.
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Let M,N be two bounded complexes of F -isocrystals. Remind that F-isoc has internal Hom
so that we can form the internal Hom complex Hom•(M,N) with Frobenius φM,N . Consider the
following morphism of Qp-linear23 complexes

ξM,N : Hom•(M,N)→ Hom•(M,N), x 7→ x− φM,Nx .

Then we can prove as in [Ban02, proposition 1.7] that

(3.4.2.a) HomDb(F-isoc)(M,N [i]) ∼= Hi−1(Cone ξM,N ) .

Similarly given two complexes M,N in Cbrig we define the morphism of complexes

ξ′M,N : Hom•(M,N)→ Hom•(Mσ, N), x 7→ x ◦ φM − φN ◦ (x⊗σ 1) .

24Then the Hom groups in Db
rig can be computed as follows

(3.4.2.b) HomDbrig
(M,N [i]) ∼= Hi−1(Cone ξ′M,N ) .

Now it is easy to check that given two F -isocrystals M,N we have

(3.4.2.c) ExtiF-isoc(M,N) ∼= HomDbrig
(ιM, ιN [i])

and the faithfulness of ι follows. �

Definition 3.4.3. Let X be an algebraic k-scheme. We define the absolute rigid cohomology as

Hn
φ (X, i) := HomDbrig

(1, RΓrig(X)(i)[n]) .

It follows from the equivalence ι of the above lemma that the same formula holds in Db(F-isoc)
for some object RΓ(X) corresponding to RΓrig(X).

Corollary 3.4.4. There is a natural spectral sequence

(3.4.4.a) Epq2 = ExtpF-isoc(1, Hq(X)(i)) ⇒ Hp+q
φ (X, i)

degenerating to the following short exact sequence

0→ H1
rig(X)/Im(Id−φ/pi)→ Hn,i

φ (X)→ Hn
rig(X)φ=pi → 0 .

Proof. The existence of the spectral sequence follows from the formula (3.4.2.c). By (3.4.2.b) it is
concentrated in the columns p = 0, 1 so that it gives short exact sequences. �

Proposition 3.4.5. There exists a motivic ring spectrum Eφ ∈ DMB(k) representing the absolute
rigid cohomology, i.e.

Hn
φ (X, i) ∼= En,iφ (X) := HomDMB(k)(M(X),Eφ(i)[n]) .

Proof. By point (4) of proposition 3.3.2 we can define a family of morphism of presheaves of
complexes

RΓrig
φ/pi−−−→ RΓrig .

We claim that the latter induces a morphism of ring spectra

Erig
Φ−→ Erig .

Indeed it is sufficient to notice that (φ⊗ 1) ◦ dlog = p dlog, where dlog : Q(Gm)[−1] → Erig(1) is
the stability class of the rigid spectrum.

Now we can define Eφ to be the homotopy limit of the following diagram of ring spectra

(3.4.5.a) Erig

Φ //
Id
// Erig.

the limit exists by 1.4.8.
To conclude the proof note that Eφ,i is quasi-isomorphic to the cone Cone(Id−φ/pi) (up to a

shift!). Then it is sufficient to compare (3.4.2.b) and (1.4.10.a). �

23These are not K0-linear since (in general) the Frobenius is not.
24Mind that we cannot use Hom because there is no internal Hom in Cbrig. This is due to the fact that the

Frobenius is only a quasi-isomorphism.



THE RIGID SYNTOMIC RING SPECTRUM 27

Remark 3.4.6. According to the preceding proof, one gets a canonical distinguished triangle of
DMB(k):

(3.4.6.a) Eφ → Erig
Id−Φ−−−−→ Erig

+1−−→

which induces the short exact sequences of the preceding Corollary. In particular, these exact
sequences are functorial with respect to the motive of X.

3.5. Syntomic cohomology.

3.5.1. Let X be a smooth R-scheme. With the notation of § 3.2.5, there is a map of commutative
dga

spX : EdR(XK)→ RΓdR((Xw)K) = RΓrig(Xk, X
w)

inducing the specialization on cohomology and functorial in X. Details can be found in [Tam11,
§§ 3.3,5.3].

Now we can recall the definition of syntomic cohomology Hn
syn(X, i) of X: it is the cohomology

of a complex RΓsyn(X, i) defined as the homotopy limit of the following diagram

RΓrig(Xk) RΓrig,K(Xk) RΓdR(]Xk[Xw) E′dR(XK)

RΓrig(Xk)

Id

@@

RΓrig(Xk)

φ/pi

^^ >>

RΓrig(Xk, X
w)

cc ::

EdR(XK)

aa AA

EFdR,i(XK)

__
.

(cf. [Bes00], [CCM12]). To be precise Besser uses the cone of φ− pi Id instead of Id−φ/pi.

Proposition 3.5.2. Let R be the valuation ring of a p-adic field K, then there exists a ring
spectrum Esyn in DMB(R,Qp) representing the syntomic cohomology defined by Besser, i.e. for
any smooth R-scheme X and any integer n, there is a canonical isomorphism

Hn
syn(X, i) ∼= En,isyn(X) := HomDMB(R,Qp)(M(X),Esyn(i)[n]) .

In particular all the results of section 2 apply to syntomic cohomology.

Proof. By construction the absolute rigid spectrum Eφ maps to Erig and so to the base change
Erig,K . By the six functor formalism we get the following functors

i∗ : DMB(k,Qp)→ DMB(R,Qp) , j∗ : DMB(K,Qp)→ DMB(R,Qp)

induced by the usual closed (resp. open) immersion of schemes i : Spec(k) → Spec(R) (resp.
j : Spec(K) → Spec(R)). Then we define Esyn as the homotopy limit (in the category of ring
spectra) of the following diagram

i∗Eφ → i∗Erig,K ← a→ b← c→ d← j∗EFdR

where a, b, c, d are the ring spectra induced by Erig(Xk, X
w), RΓdR(]Xk[Xw), EdR(XK), E′dR(XK),

respectively: we leave to the reader the verification that they are ring spectra following the same
proof as the one of 3.3.3.

To conclude the proof it is sufficient to note that an homotopy limit of a diagram of Morel
motives is also a Morel motive. �

Remark 3.5.3. Given a complete discrete valuation ring R with residue field k and fraction field
K, such that R/W (k) is finite, we get a map of ring spectra in DMB(k):

a0 : Eφ → Erig,K0
→ Erig,K0

⊗K0
K
∼−→ Erig,K

where the last isomorphism comes from Remark 3.3.4. Let us put a = i∗(a0).
Secondly, we get a morphism of ring spectra in DMB(R):

b : j∗EFdR → j∗EdR
sp−→ i∗Erig,K .

The first map is the canonical morphism, and the second one is the specialization map induced
by the morphism spX of Paragraph 3.5.1.
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Then the syntomic ring spectrum is characterized up to isomorphism by the following homotopy
pullback square (of morphisms of ring spectra):

(3.5.3.a) Esyn

β
��

α // j∗EFdR

b
��

i∗Eφ
a // i∗Erig,K

In other words, one can define Esyn as the homotopy limit of the lower corner of the above diagram
– but this definition is less precise than the one given in the proof of the previous proposition as
(in this way) Esyn is defined only up to non unique isomorphism.

The fact that the preceding square is a homotopy pullback can be translated into the existence
of a distinguished triangle in DMB(R):

(3.5.3.b) Esyn
α+β−−−→ i∗Eφ ⊕ j∗EFdR

a−b−−→ i∗Erig,K
+1−−→

which corresponds to the long exact sequence, for X/R smooth:

(3.5.3.c) . . .→ Hn
syn(X, i)

α∗+β∗−−−−→ Hn
φ (Xk, i)⊕ F iHn

dR(XK)
a∗−b∗−−−−→ Hn

rig(Xk/K)→ . . .

Here, α∗ (resp. β∗) is the usual projection map from syntomic cohomology to En,iφ (Xk) =

Hn
φ (Xk, i) (resp. F iHn

dR(XK)) while a∗ is the canonical map and b∗ is induced by the specialization
map from de Rham cohomology to rigid cohomology.

Note also that Esyn is the homotopy limit of the diagram of ring spectra

j∗EFdR

b
��

i∗Erig

Φ //
Id
// i∗Erig

// i∗Erig,K

so that we also obtain the following distinguished triangle:

Esyn → i∗Erig ⊕ j∗EFdR → i∗Erig ⊕ i∗Erig,K
+1−−→

which precisely induces the long exact sequence originally considered by Besser.

Remark 3.5.4. Syntomic cohomology can be functionally extended to diagrams of S-schemes, as
well as rigid cohomology, absolute rigid cohomology and filtered de Rham cohomology. One should
be careful however that the syntomic long exact sequence (3.5.3.b) can be extended only to the
case of diagrams of smooth S-schemes.

3.6. Localizing syntomic cohomology.

3.6.1. As the fibred triangulated category DMB satisfies the “gluing formalism” (this is called
the localization property in [CD12b], cf. sec. 2.3), we get a canonical distinguished triangle:

(3.6.1.a) i∗i
!(Esyn)

ad′i−−→ Esyn
adj−−→ j∗j

∗(Esyn)
∂i−→ i∗i

!(Esyn)[1]

for i : Spec k → SpecR and j : SpecK → SpecR the natural immersions. The maps ad′i and
adj are the obvious adjunction maps and the map ∂i is the unique morphism which fits in this
distinguished triangle (see [CD12b, 2.3.3]).

Remark 3.6.2. One can be more precise about the gluing formalism: given any object M of
DMB(R), there exists a unique distinguished triangle of the form

Mk →M →MK
∂−→Mk[1]

such that Mk (resp. MK) has support in Spec k, i.e. j∗Mk = 0 (resp. in SpecK, i.e. i!(MK) = 0).
This means that there exists a canonical isomorphism of that triangle with the following one:

i∗i
!(M)

ad′i−−→M
adj−−→ j∗j

∗(M)
∂i−→ i∗i

!(M)[1].
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3.6.3. Let us introduce yet another spectrum: we consider the map

a0 : Eφ → Erig,K

which is defined at the level of the underlying model category, and take its homotopy fiber Ěφ. In

particular, we have a canonical morphism: i∗Erig,K
∂a−→ i∗Ěφ[1].

Proposition 3.6.4. Consider the above notations. Then the syntomic spectrum is equivalent to
the homotopy fiber of the morphism

šp : j∗EFdR
b−→ i∗Erig,K

∂a−→ i∗Ěφ[1] .

Moreover, there are canonical identifications

i!Esyn = Ěφ, j∗Esyn = EFdR

through which the localization triangle (3.6.1.a) is identified with

i∗Ěφ → Esyn → j∗EdR
šp−→ i∗Ěφ[1].

Remark 3.6.5. In fancy terms, the generic fiber of Esyn is the ring spectrum EFdR. While we
cannot compute the special fiber of Esyn, its exceptional special fiber is the ring spectrum which
is ”the image of absolute rigid cohomology in rigid cohomology” and Esyn is obtained by gluing
these two ring spectra.

Proof. By definition of Ěφ, there is a canonical distinguished triangle in DMB(k):

Ěφ
ν0−→ Eφ

a0−→ Erig,K

∂a0−−→ Ěφ[1]

which induces the following triangle after applying i∗:

i∗Ěφ
ν−→ i∗Eφ

a−→ i∗Erig,K
∂a−→ i∗Ěφ[1].

Now according to the fact the square (3.5.3.a) is a homotopy pullback, one gets a canonical
commutative diagram in DMB(R):

C(α) //

∼ ��

Esyn

β
��

α // j∗EFdR

b
��

// C(α)[1]

∼��
i∗Ěφ

ν // i∗Eφ
a // i∗Erig,K

∂a // i∗Ěφ[1].

In other words, we get a distinguished triangle of the form:

i∗Ěφ → Esyn
α−→ j∗EFdR

šp−→ i∗Ěφ[1].

Finally, according to the above remark, one gets a canonical isomorphism of triangles:

i∗Ěφ //

∼
��

Esyn

∼
��

α // j∗EFdR

∼
��

šp // i∗Ěφ[1]

∼
��

i∗i
!Esyn

adi // Esyn

adj// j∗j∗(Esyn)
∂i // i∗i!Esyn[1] .

�

Remark 3.6.6 (The work of Tamme). The relative cohomology theory H∗rel(X, ∗) of [Tam11] is
represented by the (generalized) cone of the diagram

i∗Erig,K ← a→ b← c→ d← j∗EFdR

where we use the notation of the proof of Proposition 3.5.2. This is roughly a Cone of a morphism
of ring spectra A→ B, hence it is not a ring spectrum and in particular there is no unit section.

It follows by the localization sequence that this cohomology theory is represented by the cone
of the canonical adjunction map Esyn → i∗i

!Esyn = i∗Eφ.
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Example 3.6.7. Let S = Spec
(
W (k)

)
(for simplicity) and X be the connected component of the

Néron model of an elliptic curve with multiplicative reduction, i.e. X is an S-group scheme such
that its generic fiber is an elliptic curve and the special fiber is isomorphic to Gm. Then X/S is
smooth and we can easily compute the long exact sequence for syntomic cohomology. For instance
we get

0→ H0
rig(Xs)

a−→ H0
rig(Xs)⊕H0

rig(Xs)→ H1,1
syn(X)→

→ H1
rig(Xs)⊕ F 1H1

dR(Xη)
b−→ H1

rig(Xs)⊕H1
rig(Xs)→ H2,1

syn(X)→ F 1H2
dR(Xη)→ 0

where a(x) = (x− φ(x)/p,−x) is injective and b(x, y) = (0, y − x). It follows that Hn,1
syn
∼= K2 (as

Qp-vector spaces) for n = 1, 2.
The same result can be obtained using the localization triangle: explicitly we get the following

exact sequence

0→ H1,1
syn,s(X)→ H1,1

syn(X)→ F 1H1
dR(Xη)

δ−→ H2,1
syn,s(X)→ H2,1

syn(X)→ F 1H2
dR(Xη)→ 0 .

Here H1,1
syn,s(X) stands for Hom(Q(X), i∗i

!Esyn(1)[1]). Using proposition 3.6.4 we get Hn,1
syn,s(X) =

Hn−1
rig (Xs) for n = 1, 2. We also get that δ is the zero map. For a complete account on the de

Rham/rigid cohomology of abelian varieties and their reduction we refer to [LS86].

Example 3.6.8 (Semistable elliptic curve). Let X/S be an elliptic curve such that Xk is a nodal
cubic. We assume that the singular point x0 ∈ Xk is k-rational. The above remark give a recipe
to compute (or approximate) the syntomic cohomology of X

En,isyn(X) := HomDA1 (S,Qp)(M(X),Esyn(i)[n])

where M(X) = f!f
!(QS) and f : X → S is the structural morphism. Let us compute i∗(M(X)).

Given the pullback square:

Xk
l //

f0

��

X

f

��
Spec k

i // S

one has a canonical exchange map:

i∗f!f
!(QS) ' f0!l

∗f !(QS)→ f0!f
!
0i
∗(QS) = f0!f

!
0(Qk) = M(Xk)

(the first iso is due to the base change theorem of the six functors formalism). This map is an
isomorphism in the two following cases:

• f is smooth,
• X is regular and f is quasi-projective (and so in our case).

In the second case, this is due to the absolute purity theorem: as f is quasi-projective,
it can be factored f = pi where p : P → S is smooth and i is a closed immersion and then
one computes:

f !(QS) = i!p!(QS) ' i!(QP )(d)[2d] ' QX(d− n)[2(d− n)]

the first iso follows as p is smooth and the second one because i is a closed immersion
between regular schemes. Here d (resp. n) is the relative dimension of P/S (resp. codi-
mension of i), so that d− n is the relative dimension of X/S.

Hence for X semistable we have long exact sequences

i!En,isyn(Xk)→ En,isyn(X)→ j∗j
∗En,isyn(X) = F iHdR(Xη)→ +

The term i!En,isyn(Xk) depends only on the special fiber. In this case it is easy to construct a

proper and smooth hypercover Y∗ of Xk: let π : X̃k → Xk be the normalization map, then we

may take Y0 = x0 t X̃k, Y1 = π−1(x0) and Yi = ∅ for i > 1. Since X̃k is isomorphic to the
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projective line we get that M(Xk) = Q⊕Q[1]⊕Q(1)[2] in DMB(k,Q). This decomposition allows
to estimate i!En,isyn(Xk). For instance we can compute

i!En,isyn(Xk) = Hn−1
rig (Xk)K ' K for n = 1, 2 .

3.7. Syntomic regulator.

3.7.1. By using the general definition of § 2.1.3 we get the syntomic (resp. rigid, de Rham, etc.)
cycle classes. Since all the maps of the homotopy pullback square (3.5.3.a) are morphisms of
monoids in DMB(R), we get the following commutative diagram:

Hn
syn(X,m)

α∗ //

β∗

��

FmHn
dR(XK)

sp

��

Hn,m
B (X)

σφi
∗

xx
(a)

(b)

σsyn

ff
σFdRj

∗
77

σrigi
∗

''
Hn
φ (Xk,m) // Hn

rig(Xk/K)

where σ? stands for the higher cycle classes relevant to the corresponding cohomology , and i∗

(resp. j∗) denotes the pullback in motivic cohomology by i (resp. j).

(1) The part (a) of the above commutative diagram simply express the fact that for any
smooth k-scheme X0, the higher cycle class map

σrig : Hn,m
B (X0)→ Hn

rig(X/K0)

lands into the part φ = pm of rigid cohomology and that it admits a canonical lifting to
the absolute rigid cohomology Hn,m

φ (X) through the canonical surjection

Hn,m
φ (X)→ Hn

rig(X/K0)φ=pm

of Corollary 3.4.4.
(2) One can deduce from the commutativity of the part (b) of the above diagram another proof

of the fact, already obtained in [CCM12], that the specialization map sp is compatible with
the specialization map spCH in Chow theory as defined in [Ful98, §20.3]. Indeed, in the
case n = 2m, (b) can be rewritten as follows:

CHm(XK)
σFdR //

spCH

��

F 2mHm
dR(XK)

sp

��

CHm(X)

i∗ **

j∗ 44

CHm(Xk)
σrig // Hm

rig(Xk/K)

and the assertion follows as j∗ is surjective and spCH is the unique morphism making the
left hand side commutative.

(3) (Concerning the terminology) The term “higher cycle classes” comes from the theory of
higher Chow groups – which, for smooth R-schemes, coincide rationally with Beilinson
motivic cohomology according to [Lev04, 14.7].

The term “syntomic regulator” has been introduced by M. Gros in [Gro90]. It comes
from the intuition that syntomic cohomology is an analogue of Deligne cohomology and
that one can transport the setting of Beilinson’s conjectures from Deligne cohomology
to syntomic cohomology. One should be careful however that in the case of Deligne
cohomology and if (2m − n) = 1, then the higher cycle class map is only a part of the
regulator (see [Sou86, §3.3]).

Remark 3.7.2. The syntomic Chern classes are constructed as in § 2.1.4. These are determined
by the first Chern class c1 of the canonical line bundle of P1

R. According to our construction of
the syntomic ring spectrum, this is nothing else than the class dlog. One deduces that the Chern
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classes obtained here in syntomic cohomology coincide with the one previously constructed by
A. Besser in [Bes00].

Proposition 3.7.3. Let f : Y → X be a projective morphism between smooth R-schemes, and
denote by fk (resp. fK) its special (resp. generic) fiber. Then the following diagram is commuta-
tive:

Hn
syn(Y, i)

α∗+β∗ //

f∗
��

Hn
φ (Yk, i)⊕ F iHn

dR(YK)
a∗−b∗ //

fk∗+fK∗
��

Hn
rig(Yk/K) //

fk∗
��

Hn+1
syn (Y, i)

f∗
��

Hn−2d
syn (X, i− d)

α∗+β∗

// Hn−2d
φ (Xk, i− d)⊕ F i−dHn−2d

dR (XK)
a∗−b∗
// Hn−2d

rig (Xk/K) // Hn−2d+1
syn (X, i− d)

where the lines are given by the exact sequences (3.5.3.c).

Proof. Applying the same formalism to the motivic ring spectra EFdR, Erig,K , Eφ, one obtains
Gysin morphisms on their cohomology, satisfying the preceding properties. Moreover, using the
distinguished triangle (3.5.3.b) of DMB(R), one gets the result. �

3.7.4. Recall that in § 2.2.1 we have associated four theories (cohomology, homology, coho. with
compact support, BM homology) to any motivic ring spectrum.

(1) We get syntomic theories and the higher cycle class (2.1.3.a) also for singular R-schemes25.
When focusing attention to Chow theory, one gets in particular:
• X regular: σsyn : CHn(X)→ H2n

syn(X,n).

• X regular quasi-projective: σsyn : CHn(X)→ Hsyn,BM
2n (X,n).

The second point follows from the fact Hn,i
B (X) ' HB,BM

2d−n,d−i(X) where d is the (Krull)

dimension of X according to the motivic absolute purity theorem ([CD12b, 14.4.1]).
(2) When the base scheme is S = Spec k, we get rigid (resp. absolute rigid) theories associated

with Esyn,K (resp. Eφ) and regulators for these theories.
In the case K = K0, the Frobenius operator Φ of Erig induces an action of Frobenius

on all four theories, compatible with the regulator. Moreover, the distinguished triangle
(3.4.6.a) yields long exact sequences in all four theories.

(3) When S = SpecK, we get the de Rham theory (resp. filtered de Rham) associated with
EdR (resp. EFdR) equipped with regulators. The canonical map EFdR → EdR induces
natural maps of these theories, compatible with regulators.

Consider the specialization map:

sp : j∗EFdR → i∗Erig,K .

Given any R-scheme X with structural morphism f , and applying f∗f
! to this map one

obtains:

sp∗ : HFdR,BM
n (XK , i)→ Hrig,K,BM

n (Xk, i)

using the exchange isomorphisms: f !i∗ = i′∗f
!
k and f !j∗ = j′∗f

!
K . Similarly, if we apply

f∗f
! to the distinguished triangle (3.5.3.b), one gets the following long exact sequence:

(3.7.4.a)

. . .→ Hsyn,BM
n (X, i)

α∗+β∗−−−−→ Hφ,BM
n (Xk, i)⊕HFdR,BM

n (XK , i)
a∗−sp∗−−−−−→ Hrig,K,BM

n (Xk, i)→ . . .

3.7.5. All the theories considered in the previous paragraph satisfy the functorialities described
in § 2.2.2. Moreover, regulators are compatible with these functorialities. Similarly, the maps
sp∗, α∗, β∗, a∗ and b∗ considered in part (3) of this example are natural with respect to proper
covariant and smooth contravariant functorialities.

25Recall that for singular schemes, Beilinson motivic cohomology is defined after [CD12b] and [Cis03] as the

graded part of homotopy invariant K-theory for the γ-filtration.
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Moreover, taking care of the functoriality explained in the previous remark for motivic BM-
homology, one can check the following diagram is commutative:

HB
n,i(XK/K)

σFdR // HFdR,BM
n (XK , i)

sp∗

��

HB
n,i(X/R)

i∗ **

j∗ 44

HB
n,i(Xk/k)

σrig // Hrig,K,BM
n (Xk, i).

When X/R is quasi-projective regular with good reduction and i = 2n, one obtains in particular
a generalization of the second part of Remark 3.7.1 (applying the motivic absolute purity theorem
[CD12b, 14.4.1], all the motivic BM-homology in the above diagram can be identified with Chow
groups in that case).

This fact can be extended to the exact sequence (3.7.4.a) and to its compatibility with the
regulator in syntomic BM-homology.

3.8. Rigid syntomic modules.

3.8.1. The aim of this last section is to apply the theory developed in [CD12b, sec. 7.2] to the
syntomic ring spectrum Esyn.

Put S = SpecR. Recall that by construction, Esyn can be seen as an object of Spring(S,Q)
(Paragraph 1.4.6).

Let f : X → S be any morphism of schemes. The pullback functor f∗ on the category of Tate
spectra is monoidal. Thus, it obviously induces a functor:

f∗ : Spring(S,Q)→ Spring(X,Q).

In particular, we can define the rigid syntomic ring spectrum over X as follows:

Esyn,X := f∗(Esyn).

The collection of these ring spectra defines a cartesian section of the fibered category Spring(−,Q)
over the category of R-schemes. In particular, one can apply [CD12b, Prop. 7.2.11] to it. In
particular, the category of modules over Esyn,X in Sp(X,Q) admits a model structure.

Definition 3.8.2. Consider the above notations.
We define the category Esyn-modX of rigid syntomic modules over X as the homotopy category

of the model category of modules over the ring spectrum Esyn,X .

3.8.3. According to [CD12b], Prop. 7.2.13 and 7.2.18, rigid syntomic modules inherit the good
functoriality properties of the stable homotopy category (in the terminology of [CD12b, Def.
2.4.45], the category Esyn-mod, fibered over the category of R-schemes, is motivic). Let us recall
briefly the six functors formalisms: given a morphism f : T → S of R-schemes, one has two pairs
of adjoint functors:

f∗ : Esyn-modS � Esyn-modT : f∗ ,

f! : Esyn-modT � Esyn-modS : f! , for f separated of finite type,

and Esyn-modX is triangulated closed monoidal. We denote by ⊗ (resp. Hom) the tensor product
(resp. internal Hom).

• f∗ = f! for f proper,
• Relative purity: f ! = f∗(d)[2d] for f smooth of constant relative dimension d,
• Base change formulas: f∗g! = g′!f

′∗, for f any morphism (resp. g any separated morphism
of finite type), f ′ (resp. g′) the base change of f along g (resp. g along f).

• Projection formulas: f !(M ⊗ f∗(N)) = f!(M)⊗N .
• Localization property: given any closed immersion i : Z → S of R-schemes, with comple-

mentary open immersion j, there exists a distinguished triangle of natural transformations
as follows:

j!j
! → 1→ i∗i

∗ ∂i−−→ j!j
![1]
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where the first (resp. second) map denotes the counit (resp. unit) of the relevant adjunc-
tion (as in Paragraph 3.6.1).

Remark 3.8.4. An important set of properties is missing in the theory of rigid syntomic modules.
One will say that a syntomic module over X is constructible if and only if it is compact in

the triangulated category Esyn-modX . The category of constructible modules should enjoy the
following properties:

(1) they are stable by the six operations (when restricted to excellent R-schemes),
(2) they satisfy Grothendieck duality (existence of a dualizing module).

To get these properties, one has only to prove the absolute purity for syntomic modules: given
any closed immersion i : Z → X of regular R-schemes, of pure codimension c, there exists an
isomorphism:

i!(1X) = 1Z(c)[2c].

3.8.5. Syntomic triangulated realization.– Applying again [CD12b], Prop. 7.2.13, one gets for any
R-scheme X an adjunction of triangulated categories:

Lsyn
X : DMB(X) � Esyn-modX : Osyn

X

such that:

(1) Osyn
X is conservative.

(2) For any Beilinson motive M over X, one has an isomorphism

OsynLsyn(M) 'M ⊗ Esyn

functorial in M .
(3) The functor Lsyn

X commutes with the operations f∗, f!, ⊗.

Let us denote by 1X the unit object of Esyn-modX . According to point (2), one obtains a canonical
isomorphism:

HomEsyn-modX

(
1X ,1X(i)[n]

)
' En,isyn(X)

which is functorial in X and compatible with products.

Remark 3.8.6. In the preceding section, one has derived Bloch-Ogus axioms, for syntomic coho-
mology and syntomic BM-homology, from the functoriality of DMB. In fact, as in [BO74, Ex.
2.1], one can also obtain these axioms from the properties of syntomic modules stated above.

3.8.7. Descent properties.– According to [CD12b, sec. 3.1], the 2-functor X 7→ Esyn-modX can be
extended to diagrams of R-schemes (as well as the syntomic triangulated realization). Moreover,
the pair of functors (f∗, f∗) can be defined when f is a morphism of diagrams of R-schemes.

From [CD12b, 7.2.18], the motivic category Esyn-mod is separated. Therefore, according to
[CD12b, 3.3.37], it satisfies h-descent (see Paragraph 2.2.11 for the h-topology): for any h-
hypercover p : X → X of R-schemes, the functor

p∗ : Esyn-modX → Esyn-modX

is fully faithful.
Recall also the following more concrete version of descent: given any pseudo-Galois cover26

f : Y → X of group G, any syntomic module M over X, the canonical morphism:

M →
(
f∗f
∗(M)

)G
is an isomorphism, where we have denoted by ?G the fixed point for the obvious action of G.

26f is finite surjective and admits a factorization f = pf ′ where f ′ is a Galois cover of group G and p is radicial.
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