1,193 research outputs found
Nonstandard electroconvection in a bent-core oxadiazole material
Electroconvection (EC) phenomena have been investigated in the nematic phase of a bent-core oxadiazole material with negative dielectric anisotropy and a frequency dependent conductivity anisotropy. The formation of longitudinal roll (LR) patterns is one of the predominant features observed in the complete frequency and voltage range studied. At voltages much above the LR threshold, various complex patterns such as the "crisscrossed" pattern, bimodal varicose, and turbulence are observed. Unusually, the nonstandard EC (ns-EC) instability in this material, is observed in a regime in which we measure the dielectric and conductivity anisotropies to be negative and positive respectively. A further significant observation is that the EC displays distinct features in the high and low temperature regimes of the nematic phase, supporting an earlier report that EC patterns could distinguish between regions that have been reported as uniaxial and biaxial nematic phases
Comment on "PIC simulations of circularly polarised Alfv\'en wave phase mixing: A new mechanism for electron acceleration in collisionless plasmas" by Tsiklauri et al
Tsiklauri et al. recently published a theoretical model of electron
acceleration by Alfv\'en waves in a nonuniform collisionless plasmas. We
compare their work with a series of results published earlier by an another
team, of which Tsiklauri et al. were probably unaware. We show that these two
series of works, apparently conducted independently, lead to the same
conclusions. This reinforces the theoretical consistency of the model.Comment: 2 pages. Accepted at "Astronomy and Astrophysics
Analytical parametrization and shape classification of anomalous HH production in the EFT approach
20 pages, 10 figures, LHC Higgs Cross Section Working Group report http://cds.cern.ch/record/2199287In this document we study the effect of anomalous Higgs boson couplings on non-resonant pair production of Higgs bosons () at the LHC. We explore the space of the five parameters , , , , and in terms of the corresponding kinematics of the final state, and describe a partition of the space into a limited number of regions featuring similar phenomenology in the kinematics of final state. We call clusters the sets of points belonging to the same region; to each cluster corresponds a representative point which we call a benchmark. We discuss a possible technique to estimate the sensitivity of an experimental search to the kinematical differences between the phenomenology of the benchmark points and the rest of the parameter space contained in the corresponding cluster. We also provide an analytical parametrization of the cross-section modifications that the variation of anomalous couplings produces with respect to standard model production along with a recipe to translate the results into other parameter-space bases. Finally, we provide a preliminary analysis of variations in the topology of the final state within each region based on recent LHC results
Two loop electroweak corrections to and in the B-LSSM
The rare decays and are important to research new physics beyond standard model. In
this work, we investigate two loop electroweak corrections to and in the minimal
supersymmetric extension of the SM with local gauge symmetry (B-LSSM),
under a minimal flavor violating assumption for the soft breaking terms. In
this framework, new particles and new definition of squarks can affect the
theoretical predictions of these two processes, with respect to the MSSM.
Considering the constraints from updated experimental data, the numerical
results show that the B-LSSM can fit the experimental data for the branching
ratios of and . The
results of the rare decays also further constrain the parameter space of the
B-LSSM.Comment: 33 pages, 9 figures, Published in EPJ
Electroweak and Flavour Structure of a Warped Extra Dimension with Custodial Protection
We present the electroweak and flavour structure of a model with a warped
extra dimension and the bulk gauge group SU(3) x SU(2)_L x SU(2)_R x P_LR x
U(1)_X. The presence of SU(2)_R implies an unbroken custodial symmetry in the
Higgs system allowing to eliminate large contributions to the T parameter,
whereas the P_LR symmetry and the enlarged fermion representations provide a
custodial symmetry for flavour diagonal and flavour changing couplings of the
SM Z boson to left-handed down-type quarks. We diagonalise analytically the
mass matrices of charged and neutral gauge bosons including the first KK modes.
We present the mass matrices for quarks including heavy KK modes and discuss
the neutral and charged currents involving light and heavy fields. We give the
corresponding complete set of Feynman rules in the unitary gauge.Comment: 74 pages, 2 figures. clarifying comments and references added,
version to be published in JHE
Charming CP Violation and Dipole Operators from RS Flavor Anarchy
Recently the LHCb collaboration reported evidence for direct CP violation in
charm decays. The value is sufficiently large that either substantially
enhanced Standard Model contributions or non-Standard Model physics is required
to explain it. In the latter case only a limited number of possibilities would
be consistent with other existing flavor-changing constraints. We show that
warped extra dimensional models that explain the quark spectrum through flavor
anarchy can naturally give rise to contributions of the size required to
explain the the LHCb result. The D meson asymmetry arises through a sizable
CP-violating contribution to a chromomagnetic dipole operator. This happens
naturally without introducing inconsistencies with existing constraints in the
up quark sector. We discuss some subtleties in the loop calculation that are
similar to those in Higgs to \gamma\gamma. Loop-induced dipole operators in
warped scenarios and their composite analogs exhibit non-trivial dependence on
the Higgs profile, with the contributions monotonically decreasing when the
Higgs is pushed away from the IR brane. We show that the size of the dipole
operator quickly saturates as the Higgs profile approaches the IR brane,
implying small dependence on the precise details of the Higgs profile when it
is quasi IR localized. We also explain why the calculation of the coefficient
of the lowest dimension 5D operator is guaranteed to be finite. This is true
not only in the charm sector but also with other radiative processes such as
electric dipole moments, b to s\gamma, \epsilon'/\epsilon_K and \mu\ to
e\gamma. We furthermore discuss the interpretation of this contribution within
the framework of partial compositeness in four dimensions and highlight some
qualitative differences between the generic result of composite models and that
obtained for dynamics that reproduces the warped scenario.Comment: 14 page
Photoproduction of eta mesons from the neutron: cross sections and double polarization observable E
Photoproduction of mesons from neutrons} \abstract{Results from
measurements of the photoproduction of mesons from quasifree protons and
neutrons are summarized. The experiments were performed with the CBELSA/TAPS
detector at the electron accelerator ELSA in Bonn using the
decay. A liquid deuterium target was used for the
measurement of total cross sections and angular distributions. The results
confirm earlier measurements from Bonn and the MAMI facility in Mainz about the
existence of a narrow structure in the excitation function of . The current angular distributions show a forward-backward
asymmetry, which was previously not seen, but was predicted by model
calculations including an additional narrow state. Furthermore, data
obtained with a longitudinally polarized, deuterated butanol target and a
circularly polarized photon beam were analyzed to determine the double
polarization observable . Both data sets together were also used to extract
the helicity dependent cross sections and . The
narrow structure in the excitation function of
appears associated with the helicity-1/2 component of the reaction
Modeling magnetospheric fields in the Jupiter system
The various processes which generate magnetic fields within the Jupiter
system are exemplary for a large class of similar processes occurring at other
planets in the solar system, but also around extrasolar planets. Jupiter's
large internal dynamo magnetic field generates a gigantic magnetosphere, which
is strongly rotational driven and possesses large plasma sources located deeply
within the magnetosphere. The combination of the latter two effects is the
primary reason for Jupiter's main auroral ovals. Jupiter's moon Ganymede is the
only known moon with an intrinsic dynamo magnetic field, which generates a
mini-magnetosphere located within Jupiter's larger magnetosphere including two
auroral ovals. Ganymede's magnetosphere is qualitatively different compared to
the one from Jupiter. It possesses no bow shock but develops Alfv\'en wings
similar to most of the extrasolar planets which orbit their host stars within
0.1 AU. New numerical models of Jupiter's and Ganymede's magnetospheres
presented here provide quantitative insight into the processes that maintain
these magnetospheres. Jupiter's magnetospheric field is approximately
time-periodic at the locations of Jupiter's moons and induces secondary
magnetic fields in electrically conductive layers such as subsurface oceans. In
the case of Ganymede, these secondary magnetic fields influence the oscillation
of the location of its auroral ovals. Based on dedicated Hubble Space Telescope
observations, an analysis of the amplitudes of the auroral oscillations
provides evidence that Ganymede harbors a subsurface ocean. Callisto in
contrast does not possess a mini-magnetosphere, but still shows a perturbed
magnetic field environment. Callisto's ionosphere and atmospheric UV emission
is different compared to the other Galilean satellites as it is primarily been
generated by solar photons compared to magnetospheric electrons.Comment: Chapter for Book: Planetary Magnetis
Experimental determination of the complete spin structure for anti-proton + proton -> anti-\Lambda + \Lambda at anti-proton beam momentum of 1.637 GeV/c
The reaction anti-proton + proton -> anti-\Lambda + \Lambda -> anti-proton +
\pi^+ + proton + \pi^- has been measured with high statistics at anti-proton
beam momentum of 1.637 GeV/c. The use of a transversely-polarized frozen-spin
target combined with the self-analyzing property of \Lambda/anti-\Lambda decay
allows access to unprecedented information on the spin structure of the
interaction. The most general spin-scattering matrix can be written in terms of
eleven real parameters for each bin of scattering angle, each of these
parameters is determined with reasonable precision. From these results all
conceivable spin-correlations are determined with inherent self-consistency.
Good agreement is found with the few previously existing measurements of spin
observables in anti-proton + proton -> anti-\Lambda + \Lambda near this energy.
Existing theoretical models do not give good predictions for those
spin-observables that had not been previously measured.Comment: To be published in Phys. Rev. C. Tables of results (i.e. Ref. 24) are
available at http://www-meg.phys.cmu.edu/~bquinn/ps185_pub/results.tab 24
pages, 16 figure
- …
