2,052 research outputs found

    Early-time velocity autocorrelation for charged particles diffusion and drift in static magnetic turbulence

    Full text link
    Using test-particle simulations, we investigate the temporal dependence of the two-point velocity correlation function for charged particles scattering in a time-independent spatially fluctuating magnetic field derived from a three-dimensional isotropic turbulence power spectrum. Such a correlation function allowed us to compute the spatial coefficients of diffusion both parallel and perpendicular to the average magnetic field. Our simulations confirm the dependence of the perpendicular diffusion coefficient on turbulence energy density and particle energy predicted previously by a model for early-time charged particle transport. Using the computed diffusion coefficients, we exploit the particle velocity autocorrelation to investigate the time-scale over which the particles "decorrelate" from the solution to the unperturbed equation of motion. Decorrelation time-scales are evaluated for parallel and perpendicular motions, including the drift of the particles from the local magnetic field line. The regimes of strong and weak magnetic turbulence are compared for various values of the ratio of the particle gyroradius to the correlation length of the magnetic turbulence. Our simulation parameters can be applied to energetic particles in the interplanetary space, cosmic rays at the supernova shocks, and cosmic-rays transport in the intergalactic medium.Comment: 10 pages, 11 figures, The Astrophyical Journal in pres

    Particle acceleration by collisionless shocks containing large-scale magnetic-field variations

    Full text link
    Diffusive shock acceleration at collisionless shocks is thought to be the source of many of the energetic particles observed in space. Large-scale spatial variations of the magnetic field has been shown to be important in understanding observations. The effects are complex, so here we consider a simple, illustrative model. Here, we solve numerically the Parker transport equation for a shock in the presence of large-scale sinusoidal magnetic-field variations. We demonstrate that the familiar planar-shock results can be significantly altered as a consequence of large-scale, meandering magnetic lines of force. Because perpendicular diffusion coefficient κ\kappa_\perp is generally much smaller than parallel diffusion coefficient κ\kappa_\parallel, the energetic charged particles are trapped and preferentially accelerated along the shock front in the regions where the connection points of magnetic field lines intersecting the shock surface converge, and thus create the "hot spots" of the accelerated particles. For the regions where the connection points separate from each other, the acceleration to high energies will be suppressed. Further, the particles diffuse away from the "hot spot" regions and modify the spectra of downstream particle distribution. These features are qualitatively similar to the recent Voyager's observation in the Heliosheath. These results are potentially important for particle acceleration at shocks propagating in turbulent magnetized plasmas as well as those which contain large-scale nonplanar structures. Examples include anomalous cosmic rays accelerated by the solar wind termination shock, energetic particles observed in propagating heliospheric shocks, and galactic cosmic rays accelerated by supernova blast waves, etc.Comment: accepted to Ap

    Fullerene-containing Polymers

    Get PDF
    In the present chapter, the different C60-based polymers have been classified according to structural parameters and the different synthetic strategies to prepare them have been highlighted. Two new families have been added, namely fullerene\u2013nanotubes hybrid and DNA\u2013fullerene hybrid, due to the nondiscrete nature of the corresponding members. Finally, fullerene-containing polymers\u2019 most promising applications have been discussed, mainly focusing on nonlinear optics, DNA-cleaving and photovoltaic properties

    Reverse electrodialysis – Multi effect distillation heat engine fed by lithium chloride solutions

    Get PDF
    Salinity Gradient Heat Engines (SG-HEs) have been proposed as a promising technology for converting low-temperature heat into electricity. The SG-HE includes two different processes: (i) a salinity gradient process where the salinity gradient between two solutions is converted into electricity and (ii) a thermal regeneration process where low-grade heat (T<100°C) is used to re-establish the original salinity gradient of the two streams. Among the proposed working solutions, aqueous solution of lithium chloride has been identified as one of the most promising thanks to its remarkable solubility and activity. In this work, a process model to study the performance of a SG-HE constituted by a Reverse ElectroDialysis (RED) unit coupled with a Multi Effect Distillation (MED) unit fed with lithium chloride solution is presented. The influence of the concentration of the inlet solution in the RED unit and the temperature difference in the evaporators of the MED unit on the performance were evaluated by considering ideal membranes. Furthermore, the impact of membrane permselectivity and resistance on the system performance was evaluated. Results showed promising system efficiencies, making this technology attractive for conversion of low-grade heat (<100°C) into electricity, but membrane properties should be enhanced

    Vortical amplification of magnetic field at inward shock of supernova remnant Cassiopeia A

    Full text link
    We present an interpretation of the time variability of the XX-ray flux recently reported from a multi-epoch campaign of 1515 years observations of the supernova remnant Cassiopeia A by {\it Chandra}. We show for the first time quantitatively that the [4.26][4.2-6] keV non-thermal flux increase up to 50%50\% traces the growth of the magnetic field due to vortical amplification mechanism at a reflection inward shock colliding with inner overdensities. The fast synchrotron cooling as compared with shock-acceleration time scale qualitatively supports the flux decrease.Comment: 5 pages, 2 figures, PRL in pres

    Evaluation of the economic and environmental performance of low-temperature heat to power conversion using a reverse electrodialysis - Multi-effect distillation system

    Get PDF
    In the examined heat engine, reverse electrodialysis (RED) is used to generate electricity from the salinity difference between two artificial solutions. The salinity gradient is restored through a multi-effect distillation system (MED) powered by low-temperature waste heat at 100 ◦C. The current work presents the first comprehensive economic and environmental analysis of this advanced concept, when varying the number of MED effects, the system sizing, the salt of the solutions, and other key parameters. The levelized cost of electricity (LCOE) has been calculated, showing that competitive solutions can be reached only when the system is at least medium to large scale. The lowest LCOE, at about 0.03 €/kWh, is achieved using potassium acetate salt and six MED effects while reheating the solutions. A similar analysis has been conducted when using the system in energy storage mode, where the two regenerated solutions are stored in reservoir tanks and the RED is operating for a few hours per day, supplying valuable peak power, resulting in a LCOE just below 0.10 €/kWh. A life-cycle assessment has been also carried out, showing that the case with the lowest environmental impact is the same as the one with the most attractive economic performance. Results indicate that the material manufacturing has the main impact; primarily the metallic parts of the MED. Overall, this study highlights the development efforts required in terms of both membrane performance and cost reduction, in order to make this technology cost effective in the future

    Morphological variation of the newly confirmed population of the javelin sand boa, Eryx jaculus (Linnaeus, 1758) (Serpentes, erycidae) in Sicily, Italy

    Get PDF
    The presence of the Javelin sand boa in Sicily has recently been confirmed. Here the morphological characters and sexual dimorphism of the Sicilian population of Eryx jaculus are presented. Seven meristic and six metric characters in 96 specimens from Sicily were examined. The results show that tail length, snout-vent length, the distance between nostrils and the number of ventral and subcaudal scales are different between sexes. The characters found in the Sicilian population of the Javelin sand boa resemble those of the African population (ssp. jaculus) rather than the Eurasian population (ssp. turcicus), but biomolecular studies are necessary to understand its taxonomic identity

    Diffusion of energetic particles in turbulent MHD plasmas

    Full text link
    In this paper we investigate the transport of energetic particles in turbulent plasmas. A numerical approach is used to simulate the effect of the background plasma on the motion of energetic protons. The background plasma is in a dynamically turbulent state found from numerical MHD simulations, where we use parameters typical for the heliosphere. The implications for the transport parameters (i.e. pitch-angle diffusion coefficients and mean free path) are calculated and deviations from the quasi-linear theory are discussed.Comment: Accepted for publication in Ap
    corecore