Using test-particle simulations, we investigate the temporal dependence of
the two-point velocity correlation function for charged particles scattering in
a time-independent spatially fluctuating magnetic field derived from a
three-dimensional isotropic turbulence power spectrum. Such a correlation
function allowed us to compute the spatial coefficients of diffusion both
parallel and perpendicular to the average magnetic field. Our simulations
confirm the dependence of the perpendicular diffusion coefficient on turbulence
energy density and particle energy predicted previously by a model for
early-time charged particle transport. Using the computed diffusion
coefficients, we exploit the particle velocity autocorrelation to investigate
the time-scale over which the particles "decorrelate" from the solution to the
unperturbed equation of motion. Decorrelation time-scales are evaluated for
parallel and perpendicular motions, including the drift of the particles from
the local magnetic field line. The regimes of strong and weak magnetic
turbulence are compared for various values of the ratio of the particle
gyroradius to the correlation length of the magnetic turbulence. Our simulation
parameters can be applied to energetic particles in the interplanetary space,
cosmic rays at the supernova shocks, and cosmic-rays transport in the
intergalactic medium.Comment: 10 pages, 11 figures, The Astrophyical Journal in pres