647 research outputs found

    Temperature increase inside LED-based illuminators for in vitro aPDT photodamage studies

    Get PDF
    Abstract Antimicrobial PhotoDynamic Therapy (aPDT) is an emerging strategy aimed at the eradication of bacterial infections, with a special focus on antibiotic-resistant bacteria. This method is easy to apply, not expensive and particularly interesting in case of bacteria that spontaneously produce the required photosensitizers. In the framework of a project aimed at the development of an ingestible pill for the application of aPDT to gastric infections by Helicobacter pylori, a LED-based illuminating prototype (LED-BIP) was purposely designed in order to evaluate the photodamage induced by light of different wavelengths on porphyrin-producing bacteria. This short paper reports about temperature tests performed to assess the maximum exposure time and light dose that can be administered to bacterial cultures inside LED-BIP without reaching temperatures exceeding the physiological range

    Multi-imaging investigation to evaluate the relationship between serum cystatin c and features of atherosclerosis in Non-ST-Segment elevation acute coronary syndrome

    Get PDF
    Objectives: High cystatin C(CysC) levels are associated with impaired cardiovascular outcome. Whether CysC levels are independently related to the atherosclerosis burden is still controversial. Methods: We enrolled 31 non-ST-segment elevation acute coronary syndrome patients undergoing percutaneous coronary intervention. Patients were divided into 2 groups on the basis of median value of serum CysC. Using the high CysC group as a dependent variable, univariable and multivariable analyses were used to evaluate the association between CysC and three different features of atherosclerosis: 1) coronary plaque vulnerability as assessed by optical coherence tomography (OCT), 2) coronary artery calcium (CAC) by means of computed tomography scan, and 3) aortic wall metabolic activity, as assessed using 18 F-Fluorodeoxyglucose-positron emission tomography ( 18 F-FDG-PET). Results: After univariable and multivariable analyses, 18 F-FDG uptake in the descending aorta (DA) was independently associated with a low level of CysC [(Odds Ratio = 0.02; 95%CI 0.0004-0.89; p = 0.044; 18 F-FDG uptake measured as averaged maximum target to blood ratio); (Odds Ratio = 0.89; 95%CI 0.82-0.98, p = 0.025; 18 F-FDG uptake measured as number of active slices)]. No trend was found for the association between CysC and characteristics of OCT-assessed coronary plaque vulnerability or CAC score. Conclusions: In patients with non-ST-segment elevation acute coronary syndrome (NSTE-ACS), 18 F-FDG uptake in the DA was associated with a low level of serum CysC. There was no relation between CysC levels and OCT-assessed coronary plaque vulnerability or CAC score. These findings suggest that high levels of CysC may not be considered as independent markers of atherosclerosis

    Decision Making in Patients With Metastatic Spine. The Role of Minimally Invasive Treatment Modalities

    Get PDF
    Spine metastases affect more than 70% of terminal cancer patients that eventually suffer from severe pain and neurological symptoms. Nevertheless, in the overwhelming majority of the cases, a spinal metastasis represents just one location of a diffuse systemic disease. Therefore, the best practice for treatment of spinal metastases depends on many different aspects of an oncological disease, including the assessment of neurological status, pain, location, and dissemination of the disease as well as the ability to predict the risk of disease progression with neurological worsening, benefits and risks associated to treatment and, eventually, expected survival. To address this need for a framework and algorithm that takes all aspects of care into consideration, we reviewed available evidence on the multidisciplinary management of spinal metastases. According to the latest evidence, the use of stereotactic radiosurgery (SRS) or stereotactic body radiotherapy (SBRT) for spinal metastatic disease is rapidly increasing. Indeed, aggressive surgical resection may provide the best results in terms of local control, but carries a significant rate of post-surgical morbidity whose incidence and severity appears to be correlated to the extent of resection. The multidisciplinary management represents, according to current evidence, the best option for the treatment of spinal metastases. Noteworthy, according to the recent literature evidence, cases that once required radical surgical resection followed by low-dose conventional radiotherapy, can now be more effectively treated by minimally invasive spinal surgery (MISS) followed by spine SRS with decreased morbidity, improved local control, and more durable pain control. This combination allows also extending this standard of care to patients that would be too sick for an aggressive surgical treatment

    Quantum corrections for pion correlations involving resonance decays

    Full text link
    A method is presented to include quantum corrections into the calculation of two-pion correlations for the case where particles originate from resonance decays. The technique uses classical information regarding the space-time points at which resonances are created. By evaluating a simple thermal model, the method is compared to semiclassical techniques that assume exponential decaying resonances moving along classical trajectories. Significant improvements are noted when the resonance widths are broad as compared to the temperature.Comment: 9 pages, 4 figure

    Pathological phosphorylation of tau and TDP-43 by TTBK1 and TTBK2 drives neurodegeneration

    Get PDF
    BACKGROUND: Progressive neuron loss in the frontal and temporal lobes of the cerebral cortex typifies frontotemporal lobar degeneration (FTLD). FTLD sub types are classified on the basis of neuronal aggregated protein deposits, typically containing either aberrantly phosphorylated TDP-43 or tau. Our recent work demonstrated that tau tubulin kinases 1 and 2 (TTBK1/2) robustly phosphorylate TDP-43 and co-localize with phosphorylated TDP-43 in human postmortem neurons from FTLD patients. Both TTBK1 and TTBK2 were initially identified as tau kinases and TTBK1 has been shown to phosphorylate tau epitopes commonly observed in Alzheimer's disease and other tauopathies. METHODS: To further elucidate how TTBK1/2 activity contributes to both TDP-43 and tau phosphorylation in the context of the neurodegeneration seen in FTLD, we examined the consequences of elevated human TTBK1/2 kinase expression in transgenic animal models of disease. RESULTS: We show that C. elegans co-expressing tau/TTBK1 tau/TTBK2, or TDP-43/TTBK1 transgenes in combination exhibit synergistic exacerbation of behavioral abnormalities and increased pathological protein phosphorylation. We also show that C. elegans co-expressing tau/TTBK1 or tau/TTBK2 transgenes in combination exhibit aberrant neuronal architecture and neuron loss. Surprisingly, the TTBK2/TDP-43 transgenic combination showed no exacerbation of TDP-43 proteinopathy related phenotypes. Additionally, we observed elevated TTBK1/2 protein expression in cortical and hippocampal neurons of FTLD-tau and FTLD-TDP cases relative to normal controls. CONCLUSIONS: Our findings suggest a possible etiology for the two most common FTLD subtypes through a kinase activation driven mechanism of neurodegeneration

    Prion protein amyloidosis with divergent phenotype associated with two novel nonsense mutations in PRNP

    Get PDF
    Stop codon mutations in the gene encoding the prion protein (PRNP) are very rare and have thus far only been described in two patients with prion protein cerebral amyloid angiopathy (PrP-CAA). In this report, we describe the clinical, histopathological and pathological prion protein (PrPSc) characteristics of two Dutch patients carrying novel adjacent stop codon mutations in the C-terminal part of PRNP, resulting in either case in hereditary prion protein amyloidoses, but with strikingly different clinicopathological phenotypes. The patient with the shortest disease duration (27 months) carried a Y226X mutation and showed PrP-CAA without any neurofibrillary lesions, whereas the patient with the longest disease duration (72 months) had a Q227X mutation and showed an unusual Gerstmann-StrÀussler-Scheinker disease phenotype with numerous cerebral multicentric amyloid plaques and severe neurofibrillary lesions without PrP-CAA. Western blot analysis in the patient with the Q227X mutation demonstrated the presence of a 7 kDa unglycosylated PrPSc fragment truncated at both the N- and C-terminal ends. Our observations expand the spectrum of clinicopathological phenotypes associated with PRNP mutations and show that a single tyrosine residue difference in the PrP C-terminus may significantly affect the site of amyloid deposition and the overall phenotypic expression of the prion disease. Furthermore, it confirms that the absence of the glycosylphosphatidylinositol anchor in PrP predisposes to amyloid plaque formation

    Quantum-Statistical Correlations and Single Particle Distributions for Slowly Expanding Systems with Temperature Profile

    Full text link
    Competition among particle evaporation, temperature gradient and flow is investigated in a phenomenological manner, based on a simultaneous analysis of quantum statistical correlations and momentum distributions for a non-relativistic, spherically symmetric, three-dimensionally expanding, finite source. The parameters of the model emission function are constrained by fits to neutron and proton momentum distributions and correlation functions in intermediate energy heavy-ion collisions. The temperature gradient is related to the momentum dependence of the radius parameters of the two-particle correlation function, as well as to the momentum-dependent temperature parameter of the single particle spectrum, while a long duration of particle evaporation is found to be responsible for the low relative momentum behavior of the two-particle correlations.Comment: 20 pages + 5 ps figures, ReVTeX, uses psfig.sty, the description is extended to include final state interactions, phenomenological evaporation and to fit intermediate energy heavy ion proton and neutron spectrum and correlation dat

    The tau tubulin kinases TTBK1/2 promote accumulation of pathological TDP-43

    Get PDF
    Pathological aggregates of phosphorylated TDP-43 characterize amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP), two devastating groups of neurodegenerative disease. Kinase hyperactivity may be a consistent feature of ALS and FTLD-TDP, as phosphorylated TDP-43 is not observed in the absence of neurodegeneration. By examining changes in TDP-43 phosphorylation state, we have identified kinases controlling TDP-43 phosphorylation in a C. elegans model of ALS. In this kinome-wide survey, we identified homologs of the tau tubulin kinases 1 and 2 (TTBK1 and TTBK2), which were also identified in a prior screen for kinase modifiers of TDP-43 behavioral phenotypes. Using refined methodology, we demonstrate TTBK1 and TTBK2 directly phosphorylate TDP-43 in vitro and promote TDP-43 phosphorylation in mammalian cultured cells. TTBK1/2 overexpression drives phosphorylation and relocalization of TDP-43 from the nucleus to cytoplasmic inclusions reminiscent of neuropathologic changes in disease states. Furthermore, protein levels of TTBK1 and TTBK2 are increased in frontal cortex of FTLD-TDP patients, and TTBK1 and TTBK2 co-localize with TDP-43 inclusions in ALS spinal cord. These kinases may represent attractive targets for therapeutic intervention for TDP-43 proteinopathies such as ALS and FTLD-TDP

    [(11)C]PiB PET in Gerstmann-StrÀussler-Scheinker disease

    Get PDF
    Gerstmann-StrÀussler-Scheinker Disease (GSS) is a familial neurodegenerative disorder characterized clinically by ataxia, parkinsonism, and dementia, and neuropathologically by deposition of diffuse and amyloid plaques composed of prion protein (PrP). The purpose of this study was to evaluate if [(11)C]Pittsburgh Compound B (PiB) positron emission tomography (PET) is capable of detecting PrP-amyloid in PRNP gene carriers. Six individuals at risk for GSS and eight controls underwent [(11)C]PiB PET scans using standard methods. Approximately one year after the initial scan, each of the three asymptomatic carriers (two with PRNP P102L mutation, one with PRNP F198S mutation) underwent a second [(11)C]PiB PET scan. Three P102L carriers, one F198S carrier, and one non-carrier of the F198S mutation were cognitively normal, while one F198S carrier was cognitively impaired during the course of this study. No [(11)C]PiB uptake was observed in any subject at baseline or at follow-up. Neuropathologic study of the symptomatic individual revealed PrP-immunopositive plaques and tau-immunopositive neurofibrillary tangles in cerebral cortex, subcortical nuclei, and brainstem. PrP deposits were also numerous in the cerebellar cortex. This is the first study to investigate the ability of [(11)C]PiB PET to bind to PrP-amyloid in GSS F198S subjects. This finding suggests that [(11)C]PiB PET is not suitable for in vivo assessment of PrP-amyloid plaques in patients with GSS
    • 

    corecore