17,318 research outputs found

    Individual differences in human annoyance response to noise

    Get PDF
    Individual variations in annoyance and in susceptibility to noise were studied to establish a finer definition of the ingredients of the human annoyance response. The study involved interactions among a heterogeneous sample of human subjects, various noise stimuli, and different physical environments of exposure. Significant differences in annoyance ratings among the six noise stimuli, all equated for peak sound pressure level, were found

    On the accuracy of retrieved wind information from Doppler lidar observations

    Get PDF
    A single pulsed Doppler lidar was successfully deployed to measure air flow and turbulence over the Malvern hills, Worcester, UK. The DERA Malvern lidar used was a CO2 µm pulsed Doppler lidar. The lidar pulse repetition rate was 120 Hz and had a pulse duration of 0.6 µs The system was set up to have 41 range gates with range resolution of 112 m. This gave a theoretical maximum range of approximately 4.6 km. The lidar site was 2 km east of the Malvern hill ridge which runs in a north-south direction and is approximately 6 km long. The maximum height of the ridge is 430 m. Two elevation scans (Range-Height Indicators) were carried out parallel and perpendicular to the mean surface flow. Since the surface wind was primarily westerly the scans were carried out perpendicular and parallel to the ridge of the Malvern hills. The data were analysed and horizontal winds, vertical winds and turbulent fluxes were calculated for profiles throughout the boundary layer. As an aid to evaluating the errors associated with the derivation of velocity and turbulence profiles, data from a simple idealized profile was also analysed using the same method. The error analysis shows that wind velocity profiles can be derived to an accuracy of 0.24 m s-1 in the horizontal and 0.3 m s-1 in the vertical up to a height of 2500 m. The potential for lidars to make turbulence measurements, over a wide area, through the whole depth of the planetary boundary layer and over durations from seconds to hours is discussed

    Effects of noise upon human information processing

    Get PDF
    Studies of noise effects upon human information processing are described which investigated whether or not effects of noise upon performance are dependent upon specific characteristics of noise stimulation and their interaction with task conditions. The difficulty of predicting noise effects was emphasized. Arousal theory was considered to have explanatory value in interpreting the findings of all the studies. Performance under noise was found to involve a psychophysiological cost, measured by vasoconstriction response, with the degree of response cost being related to scores on a noise annoyance sensitivity scale. Noise sensitive subjects showed a greater autonomic response under noise stimulation

    Pressure Induced Changes in the Antiferromagnetic Superconductor YbPd2Sn

    Get PDF
    Low temperature ac magnetic susceptibility measurements of the coexistent antiferromagnetic superconductor YbPd2Sn have been made in hydrostatic pressures < 74 kbar in moissanite anvil cells. The superconducting transition temperature is forced to T(SC) = 0 K at a pressure of 58 kbar. The initial suppression of the superconducting transition temperature is corroborated by lower hydrostatic pressure (p < 16 kbar) four point resisitivity measurements, made in a piston cylinder pressure cell. At ambient pressure, in a modest magnetic field of ~ 500 G, this compound displays reentrant superconducting behaviour. This reentrant superconductivity is suppressed to lower temperature and lower magnetic field as pressure is increased. The antiferromagnetic ordering temperature, which was measured at T(N) = 0.12 K at ambient pressure is enhanced, to reach T(N) = 0.58 K at p = 74 kbar. The reasons for the coexistence of superconductivity and antiferromagnetism is discussed in the light of these and previous findings. Also considered is why superconductivity on the border of long range magnetic order is so much rarer in Yb compounds than in Ce compounds. The presence of a new transition visible by ac magnetic susceptibility under pressure and in magnetic fields greater than 1.5 kG is suggested.Comment: 5 pages, 6 figure

    Studies relating the individual characteristics of people with their responses to noise

    Get PDF
    Characteristic human responses to aviation and industrial noise stimul

    Magnetism: the Driving Force of Order in CoPt. A First-Principles Study

    Get PDF
    CoPt or FePt equiatomic alloys order according to the tetragonal L10 structure which favors their strong magnetic anisotropy. Conversely magnetism can influence chemical ordering. We present here {\it ab initio} calculations of the stability of the L10 and L12 structures of Co-Pt alloys in their paramagnetic and ferromagnetic states. They show that magnetism strongly reinforces the ordering tendencies in this system. A simple tight-binding analysis allows us to account for this behavior in terms of some pertinent parameters

    Morphological analysis of the cm-wave continuum in the dark cloud LDN1622

    Full text link
    The spectral energy distribution of the dark cloud LDN1622, as measured by Finkbeiner using WMAP data, drops above 30GHz and is suggestive of a Boltzmann cutoff in grain rotation frequencies, characteristic of spinning dust emission. LDN1622 is conspicuous in the 31 GHz image we obtained with the Cosmic Background Imager, which is the first cm-wave resolved image of a dark cloud. The 31GHz emission follows the emission traced by the four IRAS bands. The normalised cross-correlation of the 31 GHz image with the IRAS images is higher by 6.6sigma for the 12um and 25um bands than for the 60um and 100um bands: C(12+25) = 0.76+/-0.02 and C(60+100) = 0.64+/-0.01. The mid-IR -- cm-wave correlation in LDN 1622 is evidence for very small grain (VSG) or continuum emission at 26-36GHz from a hot molecular phase. In dark clouds and their photon-dominated regions (PDRs) the 12um and 25um emission is attributed to stochastic heating of the VSGs. The mid-IR and cm-wave dust emissions arise in a limb-brightened shell coincident with the PDR of LDN1622, where the incident UV radiation from the Ori OB1b association heats and charges the grains, as required for spinning dust.Comment: accepted for publication in ApJ - the complete article with uncompressed figures may be downloaded from http://www.das.uchile.cl/~simon/ftp/l1622.pd

    A shrinking Compact Symmetric Object: J11584+2450?

    Get PDF
    We present multi-frequency multi-epoch Very Long Baseline Array (VLBA) observations of J11584+2450. These observations clearly show this source, previously classified as a core-jet, to be a compact symmetric object (CSO). Comparisons between these new data and data taken over the last 9 years shows the edge brightened hot spots retreating towards the core (and slightly to the west) at approximately 0.3c. Whether this motion is strictly apparent or actually physical in nature is discussed, as well as possible explanations, and what implications a physical contraction of J11584+2450 would have for current CSO models.Comment: 16 pages, 6 figures, 5 tables. Accepted for publication in Ap

    Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers

    Full text link
    Spin pumping is a mechanism that generates spin currents from ferromagnetic resonance (FMR) over macroscopic interfacial areas, thereby enabling sensitive detection of the inverse spin Hall effect that transforms spin into charge currents in non-magnetic conductors. Here we study the spin-pumping-induced voltages due to the inverse spin Hall effect in permalloy/normal metal bilayers integrated into coplanar waveguides for different normal metals and as a function of angle of the applied magnetic field direction, as well as microwave frequency and power. We find good agreement between experimental data and a theoretical model that includes contributions from anisotropic magnetoresistance (AMR) and inverse spin Hall effect (ISHE). The analysis provides consistent results over a wide range of experimental conditions as long as the precise magnetization trajectory is taken into account. The spin Hall angles for Pt, Pd, Au and Mo were determined with high precision to be 0.013±0.0020.013\pm0.002, 0.0064±0.0010.0064\pm0.001, 0.0035±0.00030.0035\pm0.0003 and 0.0005±0.0001-0.0005\pm0.0001, respectively.Comment: 11 page
    corecore