The spectral energy distribution of the dark cloud LDN1622, as measured by
Finkbeiner using WMAP data, drops above 30GHz and is suggestive of a Boltzmann
cutoff in grain rotation frequencies, characteristic of spinning dust emission.
LDN1622 is conspicuous in the 31 GHz image we obtained with the Cosmic
Background Imager, which is the first cm-wave resolved image of a dark cloud.
The 31GHz emission follows the emission traced by the four IRAS bands. The
normalised cross-correlation of the 31 GHz image with the IRAS images is higher
by 6.6sigma for the 12um and 25um bands than for the 60um and 100um bands:
C(12+25) = 0.76+/-0.02 and C(60+100) = 0.64+/-0.01.
The mid-IR -- cm-wave correlation in LDN 1622 is evidence for very small
grain (VSG) or continuum emission at 26-36GHz from a hot molecular phase. In
dark clouds and their photon-dominated regions (PDRs) the 12um and 25um
emission is attributed to stochastic heating of the VSGs. The mid-IR and
cm-wave dust emissions arise in a limb-brightened shell coincident with the PDR
of LDN1622, where the incident UV radiation from the Ori OB1b association heats
and charges the grains, as required for spinning dust.Comment: accepted for publication in ApJ - the complete article with
uncompressed figures may be downloaded from
http://www.das.uchile.cl/~simon/ftp/l1622.pd