2,028 research outputs found

    A self-sustaining nonlinear dynamo process in Keplerian shear flows

    Full text link
    A three-dimensional nonlinear dynamo process is identified in rotating plane Couette flow in the Keplerian regime. It is analogous to the hydrodynamic self-sustaining process in non-rotating shear flows and relies on the magneto-rotational instability of a toroidal magnetic field. Steady nonlinear solutions are computed numerically for a wide range of magnetic Reynolds numbers but are restricted to low Reynolds numbers. This process may be important to explain the sustenance of coherent fields and turbulent motions in Keplerian accretion disks, where all its basic ingredients are present.Comment: 4 pages, 7 figures, accepted for publication in Physical Review Letter

    Linear and non-linear theory of a parametric instability of hydrodynamic warps in Keplerian discs

    Get PDF
    We consider the stability of warping modes in Keplerian discs. We find them to be parametrically unstable using two lines of attack, one based on three-mode couplings and the other on Floquet theory. We confirm the existence of the instability, and investigate its nonlinear development in three dimensions, via numerical experiment. The most rapidly growing non-axisymmetric disturbances are the most nearly axisymmetric (low m) ones. Finally, we offer a simple, somewhat speculative model for the interaction of the parametric instability with the warp. We apply this model to the masing disc in NGC 4258 and show that, provided the warp is not forced too strongly, parametric instability can fix the amplitude of the warp.Comment: 14 pages, 6 figures, revised version with appendix added, to be published in MNRA

    Dissipative effects on the sustainment of a magnetorotational dynamo in Keplerian shear flow

    Get PDF
    The magnetorotational (MRI) dynamo has long been considered one of the possible drivers of turbulent angular momentum transport in astrophysical accretion disks. However, various numerical results suggest that this dynamo may be difficult to excite in the astrophysically relevant regime of magnetic Prandtl number (Pm) significantly smaller than unity, for reasons currently not well understood. The aim of this article is to present the first results of an ongoing numerical investigation of the role of both linear and nonlinear dissipative effects in this problem. Combining a parametric exploration and an energy analysis of incompressible nonlinear MRI dynamo cycles representative of the transitional dynamics in large aspect ratio shearing boxes, we find that turbulent magnetic diffusion makes the excitation and sustainment of this dynamo at moderate magnetic Reynolds number (Rm) increasingly difficult for decreasing Pm. This results in an increase in the critical Rm of the dynamo for increasing kinematic Reynolds number (Re), in agreement with earlier numerical results. Given its very generic nature, we argue that turbulent magnetic diffusion could be an important determinant of MRI dynamo excitation in disks, and may also limit the efficiency of angular momentum transport by MRI turbulence in low Pm regimes.Comment: 7 pages, 6 figure

    Magnetorotational dynamo chimeras. The missing link to turbulent accretion disk dynamo models?

    Full text link
    In Keplerian accretion disks, turbulence and magnetic fields may be jointly excited through a subcritical dynamo process involving the magnetorotational instability (MRI). High-resolution simulations exhibit a tendency towards statistical self-organization of MRI dynamo turbulence into large-scale cyclic dynamics. Understanding the physical origin of these structures, and whether they can be sustained and transport angular momentum efficiently in astrophysical conditions, represents a significant theoretical challenge. The discovery of simple periodic nonlinear MRI dynamo solutions has recently proven useful in this respect, and has notably served to highlight the role of turbulent magnetic diffusion in the seeming decay of the dynamics at low magnetic Prandtl number Pm (magnetic diffusivity larger than viscosity), a common regime in accretion disks. The connection between these simple structures and the statistical organization reported in turbulent simulations remained elusive, though. Here, we report the numerical discovery in moderate aspect ratio Keplerian shearing boxes of new periodic, incompressible, three-dimensional nonlinear MRI dynamo solutions with a larger dynamical complexity reminiscent of such simulations. These "chimera" cycles are characterized by multiple MRI-unstable dynamical stages, but their basic physical principles of self-sustainment are nevertheless identical to those of simpler cycles found in azimuthally elongated boxes. In particular, we find that they are not sustained at low Pm either due to subcritical turbulent magnetic diffusion. These solutions offer a new perspective into the transition from laminar to turbulent instability-driven dynamos, and may prove useful to devise improved statistical models of turbulent accretion disk dynamos.Comment: 12 pages, 8 figures, submitted to A&

    Secular interactions between inclined planets and a gaseous disk

    Get PDF
    In a planetary system, a secular particle resonance occurs at a location where the precession rate of a test particle (e.g. an asteroid) matches the frequency of one of the precessional modes of the planetary system. We investigate the secular interactions of a system of mutually inclined planets with a gaseous protostellar disk that may contain a secular nodal particle resonance. We determine the normal modes of some mutually inclined planet-disk systems. The planets and disk interact gravitationally, and the disk is internally subject to the effects of gas pressure, self-gravity, and turbulent viscosity. The behavior of the disk at a secular resonance is radically different from that of a particle, owing mainly to the effects of gas pressure. The resonance is typically broadened by gas pressure to the extent that global effects, including large-scale warps, dominate. The standard resonant torque formula is invalid in this regime. Secular interactions cause a decay of the inclination at a rate that depends on the disk properties, including its mass, turbulent viscosity, and sound speed. For a Jupiter-mass planet embedded within a minimum-mass solar nebula having typical parameters, dissipation within the disk is sufficient to stabilize the system against tilt growth caused by mean-motion resonances.Comment: 30 pages, 6 figures, to be published in The Astrophysical Journa

    Periodic magnetorotational dynamo action as a prototype of nonlinear magnetic field generation in shear flows

    Get PDF
    The nature of dynamo action in shear flows prone to magnetohydrodynamic instabilities is investigated using the magnetorotational dynamo in Keplerian shear flow as a prototype problem. Using direct numerical simulations and Newton's method, we compute an exact time-periodic magnetorotational dynamo solution to the three-dimensional dissipative incompressible magnetohydrodynamic equations with rotation and shear. We discuss the physical mechanism behind the cycle and show that it results from a combination of linear and nonlinear interactions between a large-scale axisymmetric toroidal magnetic field and non-axisymmetric perturbations amplified by the magnetorotational instability. We demonstrate that this large scale dynamo mechanism is overall intrinsically nonlinear and not reducible to the standard mean-field dynamo formalism. Our results therefore provide clear evidence for a generic nonlinear generation mechanism of time-dependent coherent large-scale magnetic fields in shear flows and call for new theoretical dynamo models. These findings may offer important clues to understand the transitional and statistical properties of subcritical magnetorotational turbulence.Comment: 10 pages, 6 figures, accepted for publication in Physical Review

    Magnetohydrodynamic turbulence in warped accretion discs

    Get PDF
    Warped, precessing accretion discs appear in a range of astrophysical systems, for instance the X-ray binary Her X-1 and in the active nucleus of NGC4258. In a warped accretion disc there are horizontal pressure gradients that drive an epicyclic motion. We have studied the interaction of this epicyclic motion with the magnetohydrodynamic turbulence in numerical simulations. We find that the turbulent stress acting on the epicyclic motion is comparable in size to the stress that drives the accretion, however an important ingredient in the damping of the epicyclic motion is its parametric decay into inertial waves.Comment: to appear in the proceedings of the 20th Texas Symposium on Relativistic Astrophysics, J. C. Wheeler & H. Martel (eds.

    Molecular line opacity of LiCl in the mid-infrared spectra of brown dwarfs

    Full text link
    We present a complete line list for the X 1Sigma+ electronic ground state of LiCl computed using fully quantum-mechanical techniques. This list includes transition energies and oscillator strengths in the spectral region 0.3-39,640.7 cm-1 for all allowed rovibrational transitions in absorption within the electronic ground state. The calculations were performed using an accurate hybrid potential constructed from a spectral inversion fit of experimental data and from recent multi-reference single- and double-excitation configuration interaction calculations. The line list was incorporated into the stellar atmosphere code PHOENIX to compute spectra for a range of young to old T dwarf models. The possibility of observing a signature of LiCl in absorption near 15.8 microns is addressed and the proposal to use this feature to estimate the total lithium elemental abundance for these cool objects is discussed.Comment: 8 pages, 2 figures, 1 table. Accepted for publication in ApJ 613, Sept. 20 200

    The response of a turbulent accretion disc to an imposed epicyclic shearing motion

    Get PDF
    We excite an epicyclic motion, whose amplitude depends on the vertical position, zz, in a simulation of a turbulent accretion disc. An epicyclic motion of this kind may be caused by a warping of the disc. By studying how the epicyclic motion decays we can obtain information about the interaction between the warp and the disc turbulence. A high amplitude epicyclic motion decays first by exciting inertial waves through a parametric instability, but its subsequent exponential damping may be reproduced by a turbulent viscosity. We estimate the effective viscosity parameter, αv\alpha_{\rm v}, pertaining to such a vertical shear. We also gain new information on the properties of the disc turbulence in general, and measure the usual viscosity parameter, αh\alpha_{\rm h}, pertaining to a horizontal (Keplerian) shear. We find that, as is often assumed in theoretical studies, αv\alpha_{\rm v} is approximately equal to αh\alpha_{\rm h} and both are much less than unity, for the field strengths achieved in our local box calculations of turbulence. In view of the smallness (0.01\sim 0.01) of αv\alpha_{\rm v} and αh\alpha_{\rm h} we conclude that for β=pgas/pmag10\beta = p_{\rm gas}/p_{\rm mag} \sim 10 the timescale for diffusion or damping of a warp is much shorter than the usual viscous timescale. Finally, we review the astrophysical implications.Comment: 12 pages, 18 figures, MNRAS accepte

    Are Magnetic Wind-Driving Disks Inherently Unstable?

    Full text link
    There have been claims in the literature that accretion disks in which a centrifugally driven wind is the dominant mode of angular momentum transport are inherently unstable. This issue is considered here by applying an equilibrium-curve analysis to the wind-driving, ambipolar diffusion-dominated, magnetic disk model of Wardle & Konigl (1993). The equilibrium solution curves for this class of models typically exhibit two distinct branches. It is argued that only one of these branches represents unstable equilibria and that a real disk/wind system likely corresponds to a stable solution.Comment: 5 pages, 2 figures, to be published in ApJ, vol. 617 (2004 Dec 20). Uses emulateapj.cl
    corecore