A three-dimensional nonlinear dynamo process is identified in rotating plane
Couette flow in the Keplerian regime. It is analogous to the hydrodynamic
self-sustaining process in non-rotating shear flows and relies on the
magneto-rotational instability of a toroidal magnetic field. Steady nonlinear
solutions are computed numerically for a wide range of magnetic Reynolds
numbers but are restricted to low Reynolds numbers. This process may be
important to explain the sustenance of coherent fields and turbulent motions in
Keplerian accretion disks, where all its basic ingredients are present.Comment: 4 pages, 7 figures, accepted for publication in Physical Review
Letter