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ABSTRACT

The magnetorotational (MRI) dynamo has long been considered one of the possible drivers of turbulent angular momentum trans-
port in astrophysical accretion disks. However, various numerical results suggest that this dynamo may be difficult to excite in the
astrophysically relevant regime of magnetic Prandtl number (Pm) significantly smaller than unity, for reasons currently not well un-
derstood. The aim of this article is to present the first results of an ongoing numerical investigation of the role of both linear and
nonlinear dissipative effects in this problem. Combining a parametric exploration and an energy analysis of incompressible nonlinear
MRI dynamo cycles representative of the transitional dynamics in large aspect ratio shearing boxes, we find that turbulent magnetic
diffusion makes the excitation and sustainment of this dynamo at moderate magnetic Reynolds number (Rm) increasingly difficult for
decreasing Pm. This results in an increase in the critical Rm of the dynamo for increasing kinematic Reynolds number (Re), in agree-
ment with earlier numerical results. Given its very generic nature, we argue that turbulent magnetic diffusion could be an important
determinant of MRI dynamo excitation in disks, and may also limit the efficiency of angular momentum transport by MRI turbulence
in low Pm regimes.
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1. Introduction

Magnetorotational instability (MRI) occurs in differentially ro-
tating flows whose angular velocity decreases with distance to
the rotation axis (Velikhov 1959; Chandrasekhar 1960; Balbus
& Hawley 1991) and is the most commonly invoked excitation
mechanism of angular momentum-transporting turbulence in ac-
cretion disks (Balbus & Hawley 1998). In a uniform magnetic
field B, the MRI amplifies arbitrarily small perturbations ex-
ponentially and breaks down nonlinearly into MHD turbulence
(e.g. Hawley et al. 1995). The transport efficiency of MRI tur-
bulence continues to be debated, and may be reduced in the
astrophysically relevant regime of low magnetic Prandtl num-
ber (Pm), the ratio between kinematic viscosity and magnetic
diffusivity (Lesur & Longaretti 2007; Balbus & Henri 2008).

Another question in this context is that of the origin of the
MRI-supporting magnetic field. In some cases, this field may
be generated by an internal disk dynamo process which could
bootstrap MHD turbulence in the disk independently of its mag-
netic environment (Balbus & Hawley 1998; Donati et al. 2005).
Early simulations by Hawley et al. (1996) in the so-called zero
net flux configuration appropriate to this problem showed that
such a dynamo is indeed possible and is intimately coupled to
the MRI (see also Brandenburg et al. 1995), but its viability in
disks has since been questioned by numerical studies suggesting

that it may be impossible to excite at low Pm (Fromang et al.
2007), although the physical reasons for this are not yet clear
(Bodo et al. 2011; Käpylä & Korpi 2011; Oishi & Mac Low
2011; Simon et al. 2011).

The aim of this article is to seek a physical explanation
for this behaviour by exploiting recently discovered dynamical
properties of this subcritical dynamo mechanism (Rincon et al.
2007, 2008; Lesur & Ogilvie 2008), whose principles are oth-
erwise rather simple: starting from a zero net-flux axisymmetric
weak poloidal field, a larger toroidal field is generated through
the Ω effect. This field is MRI-unstable to non-axisymmetric
MHD perturbations, whose growth results in a nonlinear electro-
motive force (EMF) that sustains (and can also reverse) the ax-
isymmetric field. Recent work suggests that three-dimensional
cyclic nonlinear solutions provide the first germs of excitation
of the dynamo in shearing box simulations (Herault et al. 2011;
Riols et al. 2013) and possibly form the backbone of the ensu-
ing self-sustained MHD turbulence. Parametric studies of cycles
representative of the transitional dynamics, complemented with
an analysis of their energetics, may therefore prove useful to un-
derstand how dissipative effects affect the dynamo transition as
a whole. Here, we present the first results of an ongoing numer-
ical investigation of this kind. We focus on the simpler case of
incompressible dynamics in large aspect ratio shearing boxes,
which includes most of the fundamental physical complexity of



the problem, except for stratification and boundary effects. An
exhaustive study of different configurations will be presented in
a subsequent paper.

The equations and numerical framework used in this article
are presented in Sect. 2. In Sect. 3, we study the characteristics of
the transition in elongated shearing boxes using generic incom-
pressible numerical simulations, in order to check if the results
of Fromang et al. (2007) on the Pm-dependence of the transi-
tion extend to such configurations. We also investigate whether
cycles still provide the first germs of MRI dynamo chaos at
kinematic Reynolds number (Re) larger than studied by Riols
et al. (2013). In Sect. 4, we compute the existence boundaries of
several cycles in the magnetic versus kinematic Reynolds num-
ber parameter plane and analyse their energy budget to iden-
tify physical effects affecting the dynamics in the vicinity of
Pm ∼ 1. Additional numerical experiments aiming at investi-
gating the conditions of excitation of the dynamo, and why it
appears harder to excite at low Pm, are presented in Sect. 5. A
short discussion concludes the paper.

2. Equations and numerical framework

2.1. Model

The equations and numerical framework are the same as in the
work of Herault et al. (2011) and Riols et al. (2013) and have al-
ready been described in detail in these papers. We use the carte-
sian local shearing sheet description of differentially rotating
flows (Goldreich & Lynden-Bell 1965), whereby the axisym-
metric differential rotation is approximated locally by a linear
shear flow Ux = −S x ey, and a uniform rotation rate Ω = Ω ez,
with Ω = (2/3)S for a Keplerian equilibrium. Here (x, y, z)
are respectively the shearwise, streamwise and spanwise direc-
tions, corresponding to the radial, azimuthal and vertical direc-
tions in accretion disks. We refer to the (x, z) projection of vec-
tor fields as their poloidal component and to the y direction
as their toroidal component. Stratification and compressibility
effects are ignored for simplicity. The evolution of the three-
dimensional velocity field perturbations u and magnetic field B

is governed by the three-dimensional incompressible, dissipative
MHD equations:

∂u

∂t
−S x
∂u

∂y
+ u · ∇u = −2Ω × u + S uxey − ∇Π + B · ∇B + ν∆u,

(1)

∂B

∂t
− S x

∂B

∂y
= −S Bxey + ∇ × (u × B) + η∆B, (2)

∇ · u = 0, ∇ · B = 0. (3)

The kinematic and magnetic Reynolds numbers are defined by
Re = S L2/ν and Rm = S L2/η, where ν and η are the constant
kinematic viscosity and magnetic diffusivity, L is a typical scale
of the spatial domain and time is measured with respect to S −1.
The magnetic Prandtl number is Pm = ν/η = Rm/Re. Π is the
total of fluid plus magnetic pressure divided by the uniform den-
sity. B is expressed in terms of an alfvénic velocity. Both u and B

are measured in units of S L.

2.2. Numerical methods

We use the SNOOPY code (Lesur & Longaretti 2007) to perform
direct numerical simulations (DNS) of Eqs. (1)−(3). This code
provides a spectral implementation of the so-called numerical
shearing box model of the shearing sheet, in a finite domain of

size (Lx, Ly, Lz), at numerical resolution (Nx,Ny,Nz). The x and
y directions are taken as periodic while shear-periodicity is im-
posed in x. A discrete spectral basis of shearing waves with con-
stant ky and kz wavenumbers and constant shearwise Lagrangian
wavenumber kx0 is used to represent the fields in the sheared
Lagrangian frame. The shearing of nonaxisymmetric perturba-
tions in this model (ky , 0) is described using time-dependent
Eulerian shearwise wavenumbers, kx(t) = kx0 + S kyt. Shearing
waves are “leading” when kxky < 0 and “trailing” when kxky > 0.

Nonlinear periodic solutions are computed with the Newton-
Krylov solver PEANUTS interfaced to SNOOPY, and followed
in parameter space using arclength continuation. Almost all the
results presented in the paper are for a maximum resolution of
(48, 48, 72), ensuring convergence for all parameters considered,
except for some of the results of Sect. 3.1 which required a
higher resolution.

2.3. Symmetries and aspect ratio choice

The dynamics in the transitional regimes typical of simulations
displaying recurrent dynamics (Re and Rm of a few hundreds
to thousands) is already quite complex and clearly involves a
large number of cyclic solutions. Given the current state of un-
derstanding of the dependence of the MRI dynamo transition on
dissipative effects, our strategy to make progress on this problem
is to simplify the dynamics as much as possible and focus on a
few simple dynamo cycles which encapsulate the basic physics
of the dynamo. To achieve this, we enforce that the dynamics
takes place in a symmetric subspace to facilitate the analysis
(this does not compromise the underlying dynamical complex-
ity, see Sect. 3 of Riols et al. 2013), and notably monitor the

axisymmetric MRI-supporting field B (y-average of B), more

specifically its energetically dominant Fourier mode B0(z, t) =

B0(t) cos(kz0z) with kz0 = 2π/Lz. We also restrict our study to the
large aspect ratio configuration (Lx, Ly, Lz) = (0.7, 20, 2) already
employed by Herault et al. (2011) and Riols et al. (2013), and Re
and Rm values in the range of a few hundred, which effectively
guarantees that only a small number of simple nonlinear cyclic
solutions are excited (see Sect. III. D of Herault et al. (2011) for
a detailed explanation). Different aspect ratio configurations will
be explored in a future paper.

3. Numerical exploration of the dynamo transition

3.1. Dynamical lifetime of DNS in the (Re, Rm) plane

As mentioned in the introduction, the numerical study of
Fromang et al. (2007), for a single box size (π, 2π, π), in a com-
pressible isothermal case, suggests that zero net flux MRI turbu-
lence cannot be sustained for Pm below some critical Pmc. The
transitional dynamics in this box involves very intricate non-
linear interactions between many shearing waves and is there-
fore particularly difficult to analyse. As explained previously, we
found it more convenient here to use an elongated box in which
fewer shearing waves are active to address the problem of the
nature of the Pm-dependence of the transition.

As a preliminary step, we first ensured that the results ob-
tained by Fromang et al. (2007) pertain to our large aspect ratio
configuration. For this purpose, we used a cartography procedure
similar to that described in Riols et al. (2013). We performed a
series of DNS for different Re and Rm, using the same random
initial condition. The latter was generated as follows: for each
field component, we generated a set of random complex Fourier
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Fig. 1. Maps of the dynamical lifetime in generic DNS, as a function of
Re and Rm (Lx = 0.7, Ly = 20, Lz = 2). Each row is for a different
random initial condition. The second and third maps (from top to bot-
tom) use the same noise realization (see text) but different amplitudes
(A = 5 for the second case and A = 2.5 for the third case). The maps
on the left are for simulations at mild Re and Rm that can be conducted
at moderate numerical resolution (48 × 48 × 72). The maps on the right
are for higher Re and Rm, requiring a higher resolution (96×96×128).
The dashed line corresponds to Pm = 1.

modes and normalized the total energy density to obtain a par-
ticular white noise incompressible “realization”. For u and B, a
given zero net-flux initial condition is obtained by multiplying
this particular noise realization by an amplitude factor A (see
Riols et al. (2013) for details). The typical dynamical lifetime
measured in each DNS was then plotted on a two dimensional
map covering the (Re,Rm) grid. To check whether the results
were generic, we performed the same experiment for three differ-
ent initial conditions. The first and second ones were constructed
from different noise realizations but the same amplitude A = 5.
The third one used the same noise realization as the second one
but with A = 2.5 (shooting along the same direction in phase
space but at different distances from the laminar state).

Figure 1 (left) shows the corresponding dynamical lifetime
maps for Re and Rm between 100 and 1000, computed for a
numerical resolution 48 × 48 × 72. The maps on the right are
for the same initial conditions, but extend to higher Re and
Rm (from 500 to 3000). They required a larger numerical res-
olution (128 × 128 × 96). All the DNS whose dynamical life-
time exceeds 600 S −1 are systematically on or above the Pm ∼
1 line. At low Re, the dynamics seems to be sustained only for
Rm larger than some critical Rmc. At higher Re, the transition

border visually follows a Pm ≃ Pmc line, with Pmc of the order
of unity. This behaviour suggests that the transition border is in-
deed similar to that obtained by Fromang et al. (2007), and does
not depend on the shearing box aspect ratio or compressibility
of the fluid, at least on the qualitative level.

3.2. Transition maps

To justify our interest in cycles, we then attempted to check
whether the conclusion of Riols et al. (2013), that chaotic dy-
namo action at Re = 70 results from their global bifurcations,
extends to larger Re. The simplest signature of this effect is in the
form of fractal-like sets of initial perturbations for which the dy-
namics is long-lived. To check this, we performed several series
of DNS spanning a range of Rm and initial conditions, each of
them generated from a unique noise realization (using the same
procedure as in Sect. 3.1) and varying the perturbation amplitude
A. We constructed maps of the dynamical lifetimes for each run
as a function of Rm and A, for Re = (70, 85, 100, 150, 200, 550).

Figure 2 shows that the boundary separating the regions in
phase space where the dynamics is long-lived from those where
perturbations decay rapidly has the same qualitative fractal-like
structure for all Re. Long-lived simulations are characterized by
recurrent dynamics reminiscent of nonlinear cycles, suggesting
that the excitation of the MRI dynamo is indeed tied to that of
cycles.

At the largest Re considered though, the fractal-like features
appear to be smoothed out, and the correspondence between re-
current dynamics and chaotic flows less pronounced. We also
note that at Re = 550, the transition border seems to be at higher
Rm than at Re = 70, in line with the results of Fromang et al.
(2007) and the results of Sect. 3.1.

Overall, the previous results suggest that the excitation of
self-sustaining MHD turbulence in this problem is related to the
existence of MRI dynamo cycles and their global bifurcations.
This vindicates the idea that studying how the dynamics of sim-
ple nonlinear cycles is affected by changes in Re and Rm may
be useful to identify the physical mechanisms responsible for the
Pm-dependence of the transition.

4. Parametric study of MRI dynamo cycles

4.1. Existence boundaries in the (Re, Rm) plane

Motivated by the previous results, we investigated the domains
of existence in parameter space of three pairs of cycles S N1,
S N2, and S N3 born out of saddle node bifurcations at pair-
specific critical Rmc(Re). S N1 and S N2 have already been doc-
umented by Riols et al. (2013) (see their Figs. 7, 8), while S N3

was found more recently.

Continuation with respect to Re at fixed Rm of the lower and
upper branches LB1 and UB1 of S N1 (Fig. 3, inset) shows that
they only exist in a finite range of Re, whose extent widens as
Rm increases. S N2 and S N3 behave similarly (not shown). The
existence boundaries of all cycle pairs in the (Re,Rm) plane were
constructed by combining all critical Rmc(Re) and Rec(Rm) ob-
tained by continuation (Fig. 3). For Rm in the 300−500 range, all
cycles disappear at low enough Pm and their Rmc increases with
Re. This behaviour, reminiscent of the results of Fromang et al.
(2007), is investigated below (the seemingly large differences
between their transitional Re, Rm and ours are essentially due to
aspect ratio differences and do not reflect fundamental physical
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Fig. 2. Maps of dynamical lifetimes as a function of Rm and initial perturbation amplitude A, for a fixed noise realization (see text) and six different
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differences). For S N1, we plotted the critical points obtained for
both low resolution simulations (24× 12× 36) and at higher res-
olution (48 × 24 × 72). The boundary appears to be almost inde-
pendent of resolution. Note that we found it very difficult to ex-
plore the strongly nonlinear regime Rm > 500 at the maximum
resolution considered. Tentative results at this resolution (not

shown) suggest that SN1 may have an upper boundary in Rm
in this regime.

4.2. Magnetic energy budgets of MRI dynamo cycles

As the MRI dynamo rests on the sustainment of the axisym-

metric MRI-supporting field B0 against dissipative processes
through nonlinear interactions of non-axisymmetric modes,
analysing the magnetic energy budget of dynamo cycles, most
importantly transitional lower branch saddles such as LB1, may
give useful physical insights into the Pm ≤ 1 regime. To do this,
we write

B = B0 + b1 +
∑

j>2

b j and u = u1 +
∑

j>2

u j, (4)

where u1 and b1 stand for non-axisymmetric “MRI wave” per-
turbations supported by shearing waves with wavenumbers |ky| =
ky0 = 2π/Ly, kx(t) = S ky t, |kz| = kz0 for u1 and kz = 0 for b1.

The sum over j ≥ 2 stands for all other (smaller-scale)
fluctuations.

We first integrate the energy equation for B0(z, t) over the
volume and half cycle period T/2 = S −1Ly/Lx. Denoting this
operation by 〈〉 and taking into account that cyclic magnetic

reversals change B0 into −B0, we obtain the energy budget
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for B0,

Ω0 + I0 + A0 + D0 = 0, where (5)

Ω0 = −S 〈B0yB0x
〉 ey, I0 = 〈B0 ◦ B · ∇u〉, (6)

D0 = −η k2
z0
〈B0 ◦ B0〉, A0 = A01 + A02+ , (7)

A01 = −〈B0 ◦ u1 · ∇ b1〉, A02+ = −〈B0 ◦ u · ∇ B〉 − A01,
(8)

and ◦ is the Hadamard (entrywise) product; Ω0 is the energy

provided by the linear stretching of B0x
by the shear (Ω effect)

and I0 is a nonlinear induction term; A0 is the magnetic energy
exchanged with other modes through nonlinear advection and
D0 is the ohmic dissipation; A01 is the energy exchanged with
the MRI-unstable waves and A02+ is the energy exchanged with
all j ≥ 2 modes. Figure 4a,b (left) display the x and y projections
of Eq. (5) for LB1 as a function of Re, at fixed Rm (UB1 is more
energetic but behaves similarly). The MRI-supporting azimuthal

field B0y loses energy through laminar dissipation D0y , but also
through a nonlinear advective transfer to other modes A0y < 0,
which therefore acts as a weakly nonlinear (“turbulent”) diffu-

sion. The Ω effect is the only net source term for B0y , therefore

the sustainment of B0x
is critical for the dynamo. Figure 4a (left)

shows that B0x
gains energy from the nonlinear term A01x

> 0,
which is the product of the MRI correlation of u1 and b1, and
loses energy via D0x

and A02+x < 0, so that A01x
≃ |D0x

+ A02+x |.
A02+x transfers energy to smaller scales (where it is dissipated),

and can again be interpreted as a nonlinear diffusion of B0x
.

To understand how energy is injected into the MRI wave and

transferred to B0, we now consider the energy budget for b1,

Ω1 + I1 + A1 + D1 = 〈b1 ◦ (∂ b1/∂t)〉 ≃ 0, where (9)

Ω1 = −S 〈b1yb1x
〉 ey, I1 = I1L + I1NL, (10)

D1 = −η 〈(kx(t)
2 + k2

y0
) b1 ◦ b1〉, A1 = A10 + A12+ , (11)
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I1L = 〈b1 ◦ (B0 · ∇u1)〉 and I1NL is a nonlinear induction term;

A10 = −A01 = −〈b1 ◦ (u1 · ∇ B0)〉 is the energy exchanged

through advection between the MRI wave and B0, and A12+ ac-
counts for a similar exchange with smaller scales (Eq. (9) is al-
most zero because the wave carries a negligible amount of en-
ergy at both t = 0 and t = T/2). Figure 4a,b (right) shows that
the x and y components of the MRI perturbation b1 are fed by
induction (respectively by I1x

and Ω1y , with I1NLx
≪ I1Lx

). As
expected, some of the energy injected via the MRI is transferred

back nonlinearly to B0x
through A10x

= −A01x
, and some of it is

lost through laminar dissipation D1x
. The rest A12+x < 0 is trans-

ferred to smaller scales and can be regarded as a nonlinear diffu-
sion of MRI-unstable perturbations. Using a similar analysis, we
checked that j ≥ 2 perturbations are mostly excited via nonlin-
ear interactions, and not by the MRI, for all cases studied here.
Summing Eqs. (5) and (9) to eliminate A01x

, we obtain

I0x
+ I1x

≃ |D0x
+ D1x

| + |Dtx
|, (12)

which translates that the energy injected via the MRI as I1x
must

balance the total of “laminar” ohmic dissipation |D0x
+ D1x

| and
nonlinear dissipation |Dtx

| ≡ |A12+x + A02+x | for the dynamo to be
sustained (I0x

≪ I1x
in all cases studied here).

To understand how Eq. (12) is satisfied in different regimes,
we show in Fig. 5 the ratio |Dtx

|/(I0x
+ I1x

) for LB1 and UB1 as a
function of Re, for two values of Rm. This ratio is always signif-
icantly larger for UB1 than for LB1, which is consistent with the
standard picture of upper branches being more nonlinear than

lower branches. The amplitude of B0 is larger on UB1 (Fig. 3,
inset), which results in a stronger MRI driving (the MRI is al-

ways in the regime ky0 B0y < Ω here, so the stronger the field, the
larger the growth rate). The most important observation, how-
ever, is the significant increase of |Dtx

|/(I0x
+ I1x

) with Re for the
saddle solution LB1, which shows that a larger fraction of the en-

ergy injected in B0 and b1 is lost through nonlinear dissipation
Dtx
= A12+x + A02+x as Re increases. Our interpretation is that this

relative enhancement of “turbulent” magnetic diffusion is tied to
the facilitated excitation of velocity fluctuations at large Re.
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Fig. 6. Energy budget of simulations integrated over St = Ly/Lx for
three values of Rm. Left: net energy gain ∆Em as a function of Re and
B̂0. ∆Em = 0 isolines are shown in black, bullets mark the points ∆Em =

0 for B̂0 ≃ 0.52. Right: normalized injection and dissipation terms in
Eq. (12), as a function of Re, for the same B̂0.

5. Disappearance of the dynamo

The previous results provide qualitative clues to understand the
conditions of excitation of the dynamo. We note that the ampli-

tude of B0 on LB1 seems to asymptote to a constant at large Re
and fixed Rm (Fig. 3 (inset)), and therefore so should the MRI
growth rate for this branch. This suggests that the MRI may not

be able to sustain B0, b1 and therefore the dynamo against the
total effective magnetic diffusion beyond some critical Re, as
observed in Figs. 3 and 5. To investigate more precisely how the
energy balance of Eq. (12) may be broken, we prepared a fam-
ily of initial conditions resembling LB1 at t = 0, consisting of

an axisymmetric field B0 = B̂0 (0.04 ex + ey) parametrized by

B̂0, plus non-axisymmetric perturbations in the form of a given
packet of shearing waves (|ky| = ky0 , kx(t = 0) = 0 and multiple

kz) with weak but random amplitudes (B0x
/B0y = 0.04 is repre-

sentative of LB1 and ensures thatΩ0y is of the order of D0y ). This
set of initial conditions was then integrated by DNS during half

a cycle period typical of a reversal of B0, for a range of Re and
B̂0. The results were used to construct a map of the net energy
∆Em = I0x

+ I1x
− |D0x

+ D1x
+ Dtx

| gained or lost by the active

magnetic modes during the reversal, as a function of Re and B̂0,
for several Rm (Fig. 6 (left)). The isolines ∆Em = 0 are reminis-
cent of the continuation curves of S N1 (Fig. 3 (inset)). The range
of Re in which the system gains more energy from the MRI than
it dissipates (∆Em > 0) widens significantly at larger Rm.

Figure 6 (right) shows plots of the different terms in Eq. (12)
normalized by (I0x

+ I1x
) as a function of Re, for B̂0 ≃ 0.52.

At Rm = 280, the system loses energy for all Re after a rever-
sal. At Rm = 350, there is a range of Re in which more energy
is pumped in by the MRI than dissipated. This range widens at
even larger Rm = 400. The transition from a sustained to a de-
caying regime at large Re occurs because |D0x

+ D1x
|/(I0x

+ I1x
)

tends to a constant at large Re, while |Dtx
|/(I0x

+ I1x
) increases

slowly. The reason why the dynamo can be sustained at larger Re
as Rm increases is that the MRI growth rate is not asymptotic in

Rm in the transitional 300−500 Rm range. Laminar dissipation
is reduced relative to energy injection as Rm increases, which
partially offsets the increase in “turbulent” diffusion at large Re.
Equivalently, we may conclude that this increase at large Re re-
quires to go to larger Rm to recover the dynamo, as observed in
Figs. 2 and 3 and reported by Fromang et al. (2007).

6. Discussion

Why is the MRI dynamo in Keplerian flow harder to excite
at low Pm? Using a simple numerical setup, we have found
that weakly nonlinear “turbulent” diffusion (in a qualitative,
not strictly mean-field theoretical sense) of large-scale magnetic
modes makes it increasingly difficult to sustain the dynamo at
moderate Rm as Re increases. The significant advective transfers
of magnetic energy to small scales reported by Fromang et al.
(2007) in smaller aspect ratio simulations at large Re corroborate
this conclusion. A subtle point is that the velocity fluctuations
behind turbulent magnetic diffusion in this subcritical problem
are not externally prescribed but are indirectly transiently ex-
cited by the MRI.

Turbulent diffusion has also been measured in turbulent
flows of low Pm liquid metals (Frick et al. 2010; Rahbarnia et al.
2012), in which it is strongly suspected of raising (kinematic)
dynamo thresholds (Miralles et al. 2013). Given the very generic
nature of this effect, we therefore argue that it could be an impor-
tant determinant of MRI dynamo excitation in low Pm rotating
shear flows, such as occur in parts of some accretion disks (some
of which also have low Rm). Besides, the fact that it also affects
MRI-active modes suggests that it may be linked to the drop in
angular momentum transport reported in net-flux (imposed field)
MRI simulations at (moderately) low Pm.

More work is clearly required to connect these results to the
full diversity of simulated and astrophysical regimes, most im-
portantly the numerically challenging limit Re ≫ Rm ≫ 1,
and to study to which extent the conclusions pertain to numer-
ical configurations with different aspect ratio. A similar pre-
liminary study in smaller aspect ratio boxes suggests that the
same qualitative conclusions apply in this case. These results
will be presented in a future paper. Other nonlinear effects, some
of which may qualitatively relate to the mean-field theoretical
α effect with vertical stratification, are also probably very im-
portant in the disk dynamo problem (Brandenburg et al. 1995;
Gressel 2010; Davis et al. 2010; Käpylä & Korpi 2011; Oishi &
Mac Low 2011; Simon et al. 2011; Blackman 2012) and will be
worthwhile of investigation along the same lines.
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