510 research outputs found

    The Goss Lemming Mouse, \u3ci\u3eSynaptomys cooperi gossii\u3c/i\u3e (Goues), in Nebraska

    Get PDF
    In the course of studies on the cestode parasites of microtine rodents by one of the authors (Hansen), specimens of mice were sent to the United State National Museum where they were identified by Dr. David H. Johnson. Two of these microtines proved to be Synaptomys cooperi gossii (Coues). These specimens of Synaptomys (U.S.N.M. Nos. 282343 and 282344), collected at Lincoln, Lancaster County, Nebraska, on September 16, 1946 (male) and November 20, 1946 (female), respectively, are the first ones to be identified from Nebraska

    Optimized Integration of Renewable Energies into Existing Power Plant Portfolios

    Get PDF
    AbstractFossil fuel importing as well as exporting countries of the MENA region have recognized their enormous potential of power generation by renewable energy (RE) technologies and the associated benefit for their national budgets, and therefore have formulated ambitious targets for RE deployment. However, only few countries have a detailed master plan that shows how RE technologies can be integrated efficiently into their existing power plant portfolio. Capacity expansion of RE and conventional technologies must be adjusted and optimized in order to minimize total generation costs of the entire system while maintaining security of supply. Within the last three years, DLR has developed the capacity expansion and unit commitment optimization model REMix-CEM (Renewable Energy Mix – Capacity Expansion Model) in order to support authorities of the MENA region in the process of integrating RE technologies efficiently in the short-term and transforming their strongly growing fossil-fuel dominated power systems of today towards higher RE shares. REMix-CEM optimizes the capacity expansion of conventional and RE technologies from a state-owned utility perspective starting from the existing power plant portfolio by modeling the hourly performance of each single existing and candidate unit. The paper presents an overview of the developed methodology as well as the characteristics and capabilities of REMix-CEM by presenting a case study for the electricity sector of the Hashemite Kingdom of Jordan for the years 2013 – 2020

    Mortality risk and mental disorders: longitudinal results from the Upper Bavarian Study

    Get PDF
    The object of the study was the assessment of the mortality risk for persons with a mental disorder in an unselected representative community sample assessed longitudinally. Subjects from a rural area in Upper Bavaria (Germany) participated in semi-structured interviews conducted by research physicians in the 1970s (first assessment) and death-certificate diagnoses were obtained after an interval up to 13 years later. The sample consisted of 1668 community residents aged 15 years and over. Cox regression estimates resulted in an odds ratio of 1·35 (confidence interval 1·01 to 1·81) for persons with a mental disorder classified as marked to very severe. The odds ratio increased with increasing severity of mental illness from 1·04 for mild disorders, 1·30 for marked disorders, to 1·64 for severe or very severe disorders. The relative risk (odds ratio) for persons with a mental disorder only and no somatic disorder was 1·22, for persons with only a somatic disorder 2·00, and for those with both a mental and a somatic disorder 2·13. The presence of somatic illness was responsible for most of the excess mortality. Somatic disorders associated with excess mortality in mental disorders were diseases of the nervous system or sensory organs, diseases of the circulatory system, diseases of the gastrointestinal tract, and diseases of the skeleton, muscles and connective tissue (ICD-8). Thus, while mental illness alone had a limited effect on excess mortality, comorbidity with certain somatic disorders had a significant effec

    Clinical Study Results after En Bloc Lateral Wall Decompression Surgery with Orbital Fat Resection in 111 Patients with Graves' Orbitopathy

    Get PDF
    properly cited. Purpose. To evaluate the effect of en bloc lateral wall decompression with additional orbital fat resection in terms of exophthalmos reduction and complications. Methods. A retrospective, noncomparative case series study from 1999 to 2011 (chart review) in Graves' orbitopathy (GO) patients. The standardized surgical technique involved removal of the lateral orbital wall including the orbital rim via a lid crease approach combined with additional orbital fat resection. Exophthalmos, diplopia, retrobulbar pressure sensation, and complications were analyzed pre-and postoperatively. Results. A total of 111 patients (164 orbits) with follow-up >3 months were analysed. Mean exophthalmos reduction was 3.05mm and preoperative orbital pressure sensation resolved or improved in all patients. Visual acuity improved significantly in patients undergoing surgery for rehabilitative or vision threatening purposes. Preoperative diplopia improved in 10 patients (9.0%) but worsened in 5 patients (4.5%), necessitating surgical correction in 3 patients. There were no significant complications; however, one patient had slight hollowing of the temporalis muscle around the scar that did not necessitate revision, and another patient with a circumscribed retraction of the scar itself underwent surgical correction. Conclusions. The study confirms the efficiency of en bloc lateral wall decompression in GO in a large series of patients, highlighting the low risk of disturbance of binocular functions and of cosmetic blemish in the temporal midface region

    Multicomponent encapsulation into fully degradable protein nanocarriers via interfacial azide-alkyne click reaction in miniemulsion allows the co-delivery of immunotherapeutics

    Get PDF
    Encapsulation of multiple adjuvants along with antigens into nanocarriers allows a co-delivery to antigen-presenting cells for the synergistic induction of robust immune responses. However, loading cargoes of different molar masses, polarities, and solubilities in high efficiencies remains a challenge. Therefore, we developed a strategy to encapsulate a triple combination of the so-called adjuvants, i.e. with Resiquimod (R848), muramyl dipeptide (MDP) and polyinosinic-polycytidylic acid (Poly(I : C)) into human serum albumin (HSA) nanocarriers. The loading is conducted in situ while the nanocarrier is formed by an orthogonal and metal-free click reaction at the interface of an inverse miniemulsion. By this unique approach, high encapsulation efficiency without harming the cargo during the nanocarrier formation process and regardless of their physical properties is achieved, thus keeping their bioactivity. Furthermore, we demonstrated high control over the encapsulation efficiency and varying the amount of each cargo did not influence the efficiency of multicomponent encapsulation. Azide-modified HSA was crosslinked with hexanediol dipropiolate (HDDP) at the interface of a water-in-oil miniemulsion. Varying the crosslinker amount allowed us to tailor the density and degradation rates of the protein shell. Additional installation of disulfide bonds into the crosslinker created redox-responsive nanocarriers, which degraded both by protease and under reducing conditions with dithiothreitol. The prepared HSA nanocarriers were efficiently taken up by dendritic cells and exhibited an additive cell activation and maturation, exceeding the nanocarriers loaded with only a single drug. This general protocol allows the orthogonal and metal-free encapsulation of various drugs or adjuvants at defined concentrations into the protein nanocarriers

    Subtraction of test mass angular noise in the LISA Technology Package interferometer

    Full text link
    We present recent sensitivity measurements of the LISA Technology Package interferometer with articulated mirrors as test masses, actuated by piezo-electric transducers. The required longitudinal displacement resolution of 9 pm/sqrt[Hz] above 3 mHz has been demonstrated with an angular noise that corresponds to the expected in on-orbit operation. The excess noise contribution of this test mass jitter onto the sensitive displacement readout was completely subtracted by fitting the angular interferometric data streams to the longitudinal displacement measurement. Thus, this cross-coupling constitutes no limitation to the required performance of the LISA Technology Package interferometry.Comment: Applied Physics B - Lasers and Optics (2008

    Face the Future-Artificial Intelligence in Oral and Maxillofacial Surgery.

    Get PDF
    Artificial intelligence (AI) has emerged as a versatile health-technology tool revolutionizing medical services through the implementation of predictive, preventative, individualized, and participatory approaches. AI encompasses different computational concepts such as machine learning, deep learning techniques, and neural networks. AI also presents a broad platform for improving preoperative planning, intraoperative workflow, and postoperative patient outcomes in the field of oral and maxillofacial surgery (OMFS). The purpose of this review is to present a comprehensive summary of the existing scientific knowledge. The authors thoroughly reviewed English-language PubMed/MEDLINE and Embase papers from their establishment to 1 December 2022. The search terms were (1) "OMFS" OR "oral and maxillofacial" OR "oral and maxillofacial surgery" OR "oral surgery" AND (2) "AI" OR "artificial intelligence". The search format was tailored to each database's syntax. To find pertinent material, each retrieved article and systematic review's reference list was thoroughly examined. According to the literature, AI is already being used in certain areas of OMFS, such as radiographic image quality improvement, diagnosis of cysts and tumors, and localization of cephalometric landmarks. Through additional research, it may be possible to provide practitioners in numerous disciplines with additional assistance to enhance preoperative planning, intraoperative screening, and postoperative monitoring. Overall, AI carries promising potential to advance the field of OMFS and generate novel solution possibilities for persisting clinical challenges. Herein, this review provides a comprehensive summary of AI in OMFS and sheds light on future research efforts. Further, the advanced analysis of complex medical imaging data can support surgeons in preoperative assessments, virtual surgical simulations, and individualized treatment strategies. AI also assists surgeons during intraoperative decision-making by offering immediate feedback and guidance to enhance surgical accuracy and reduce complication rates, for instance by predicting the risk of bleeding
    • …
    corecore