250 research outputs found

    Statistical analysis of the Central-Europe Seismicity

    Get PDF
    The aim of this paper is to characterize the spatio-temporal distribution of Central-Europe seismicity. Specifically, by using a non-parametric statistical approach, the proportional hazard model, leading to an empirical estimation of the hazard function, we provide some constrains on the time behavior of earthquake generation mechanisms. The results indicate that the most conspic- uous characteristics of MW 4.0+ earthquakes is a temporal clustering lasting a couple of years. This suggests that the probability of occurrence increases immediately after a previous event. After a few years, the process becomes almost time independent. Furthermore, we investigate the cluster properties of the seismicity of Central-Europe, by comparing the obtained result with the one of synthetic catalogs generated by the epidemic type aftershock sequences (ETAS) model, which previously have been successfully applied for short term clustering. Our results indicate that the ETAS is not well suited to describe the seismicity as a whole, while it is able to capture the features of the short- term behaviour. Remarkably, similar results have been previously found for Italy using a higher magnitude threshold

    The digital girls response to pandemic: Impacts of in presence and online extracurricular activities on girls future academic choices

    Get PDF
    In the last few years, several initiatives based on extracurricular activities have been organized in many countries around the world, with the aim to reduce the digital gender gap in STEM (Science, Technology, Engineering, Math) fields. Among them, the Digital Girls summer camp, organized every year since 2014 by two Italian universities with the aim to attract female students to ICT (Information and Communication Technologies) disciplines, represents quite a unique initiative for its characteristics of long-duration (3–4 entire weeks) and complete gratuitousness for the participants. The COVID-19 emergency imposed severe changes to such activities, that had to be modified and carried out in the online mode as a consequence of social distancing. However, on one hand, the general lack of high-quality evaluations of these initiatives hinders the possibility to understand the actual impact of extracurricular activities on the future academic choices of the participants. On the other hand, the availability of data collected over different editions of Digital Girls has allowed us to analyze the summer camp impact and to evaluate the pros and cons of in-presence and online activities. The main contribution of this paper is twofold. First, we present an overview of existing experiences, at the national (Italian) and international levels, to increase female participation in integrated STEM and ICT fields. Second, we analyze how summer camp participation can influence girls’ future academic choices, with specific attention to ICT-related disciplines. In particular, the collection of a significant amount of data through anonymous surveys conducted before and after the camp activities over the two editions allowed us to evidence the different impacts of in-presence and online extracurricular activities

    Short-Facelift Approach in Temporal Artery Biopsy: Is It Safe?

    Get PDF
    Giant cell arteritis (GCA) is a quite common panarteritis of the elderly that affects medium- and large-size arteries. Despite the increasing role of imaging with advancing technology, the gold standard for the diagnosis of GCA is still the temporal artery biopsy. A described complication of superficial temporal artery biopsy (STAB), for which incidence is not clear, is the accidental damage of the frontal branch of the facial nerve. In this paper, we described the short-scar facelift surgical approach for STAB on 23 consecutive patients who underwent unilateral superficial temporal artery biopsy for GCA suspicion. We collected data in terms of postoperative complications, biopsy specimen length, biopsy result and cosmetic appearance of the scar. In our experience, this surgical approach combines the advantage of avoiding incisions within the dangerous anatomical area, minimizing the risk of facial nerve damage, with an acceptable complication rate and a good final aesthetic result which avoids visible scarring

    Optimizing Fat Grafting Using a Hydraulic System Technique for Fat Processing: A Time and Cost Analysis

    Get PDF
    Background- Many authors have researched ways to optimize fat grafting by looking for a technique that offers safe and long-term fat survival rate. To date, there is no standardized protocol. We designed a “hydraulic system technique” optimizing the relationship among the quantity of injected fat, operative time, and material cost to establish fat volume cutoffs for a single procedure. Methods- Thirty-six patients underwent fat grafting surgery and were organized into three groups according to material used: standard, “1-track,” and “2-tracks” systems. The amount of harvested and grafted fat as well as material used for each procedure was collected. Operating times were recorded and statistical analysis was performed to establish the relationship with the amount of treated fat. Results- In 15 cases the standard system was used (mean treated fat 72 [30–100] mL, mean cost 4.23 ± 0.27 euros), in 11 cases the “1-track” system (mean treated fat 183.3 [120–280] mL, mean cost 7.63 ± 0.6 euros), and in 10 cases the “2-tracks” one (mean treated fat 311[220–550] mL, mean cost 12.47 ± 1 euros). The mean time difference between the standard system and the “1-track” system is statistically significant starting from three fat syringes (90 mL) in 17.66 versus 6.87 minutes. The difference between the “1-track” system and “2-tracks” system becomes statistically significant from 240 mL of fat in 15 minutes (“1-track”) versus 9.3 minutes for the “2-tracks” system. Conclusion- Data analysis would indicate the use of the standard system, “1-track,” and “2-tracks” to treat an amount of fat < 90 mL of fat, 90 ÷ 240 mL of fat, and ≥ 240 mL of fat, respectively

    Paradigm Shift in Gastric Cancer Prevention: Harnessing the Potential of Aristolochia olivieri Extract

    Get PDF
    Gastric cancer, particularly adenocarcinoma, is a significant global health concern. Environmental risk factors, such as Helicobacter pylori infection and diet, play a role in its development. This study aimed to characterize the chemical composition and evaluate the in vitro antibacterial and antitumor activities of an Aristolochia olivieri Colleg. ex Boiss. Leaves’ methanolic extract (AOME). Additionally, morphological changes in gastric cancer cell lines were analyzed. AOME was analyzed using HPLC-MS/MS, and its antibacterial activity against H. pylori was assessed using the broth microdilution method. MIC and MBC values were determined, and positive and negative controls were included in the evaluation. Anticancer effects were assessed through in vitro experiments using AGS, KATO-III, and SNU-1 cancer cell lines. The morphological changes were examined through SEM and TEM analyses. AOME contained several compounds, including caffeic acid, rutin, and hyperoside. The extract displayed significant antimicrobial effects against H. pylori, with consistent MIC and MBC values of 3.70 ± 0.09 mg/mL. AOME reduced cell viability in all gastric cancer cells in a dose- and time-dependent manner. Morphological analyses revealed significant ultrastructural changes in all tumor cell lines, suggesting the occurrence of cellular apoptosis. This study demonstrated that AOME possesses antimicrobial activity against H. pylori and potent antineoplastic properties in gastric cancer cell lines. AOME holds promise as a natural resource for innovative nutraceutical approaches in gastric cancer management. Further research and in vivo studies are warranted to validate its potential clinical applications

    Differential DNA Methylation Encodes Proliferation and Senescence Programs in Human Adipose-Derived Mesenchymal Stem Cells

    Get PDF
    Adult adipose tissue-derived mesenchymal stem cells (ASCs) constitute a vital population of multipotent cells capable of differentiating into numerous end-organ phenotypes. However, scientific and translational endeavors to harness the regenerative potential of ASCs are currently limited by an incomplete understanding of the mechanisms that determine cell-lineage commitment and stemness. In the current study, we used reduced representation bisulfite sequencing (RRBS) analysis to identify epigenetic gene targets and cellular processes that are responsive to 5′-azacitidine (5′-AZA). We describe specific changes to DNA methylation of ASCs, uncovering pathways likely associated with the enhancement of their proliferative capacity. We identified 4,797 differentially methylated regions (FDR < 0.05) associated with 3,625 genes, of which 1,584 DMRs annotated to the promoter region. Gene set enrichment of differentially methylated promoters identified “phagocytosis,” “type 2 diabetes,” and “metabolic pathways” as disproportionately hypomethylated, whereas “adipocyte differentiation” was the most-enriched pathway among hyper-methylated gene promoters. Weighted coexpression network analysis of DMRs identified clusters associated with cellular proliferation and other developmental programs. Furthermore, the ELK4 binding site was disproportionately hyper-methylated within the promoters of genes associated with AKT signaling. Overall, this study offers numerous preliminary insights into the epigenetic landscape that influences the regenerative capacity of human ASCs

    Modulating Phosphoinositide Profiles as a Roadmap for Treatment in Acute Myeloid Leukemia

    Get PDF
    Polyphosphoinositides (PPIns) and their modulating enzymes are involved in regulating many important cellular functions including proliferation, differentiation or gene expression, and their deregulation is involved in human diseases such as metabolic syndromes, neurodegenerative disorders and cancer, including Acute Myeloid Leukemia (AML). Given that PPIns regulating enzymes are highly druggable targets, several studies have recently highlighted the potential of targeting them in AML. For instance many inhibitors targeting the PI3K pathway are in various stages of clinical development and more recently other novel enzymes such as PIP4K2A have been implicated as AML targets. PPIns have distinct subcellular organelle profiles, in part driven by the specific localisation of enzymes that metabolise them. In particular, in the nucleus, PPIns are regulated in response to various extracellular and intracellular pathways and interact with specific nuclear proteins to control epigenetic cell state. While AML does not normally manifest with as many mutations as other cancers, it does appear in large part to be a disease of dysregulation of epigenetic signalling and many novel therapeutics are aimed at reprogramming AML cells toward a differentiated cell state or to one that is responsive to alternative successful but limited AML therapies such as ATRA. Here, we propose that by combining bioinformatic analysis with inhibition of PPIns pathways, especially within the nucleus, we might discover new combination therapies aimed at reprogramming transcriptional output to attenuate uncontrolled AML cell growth. Furthermore, we outline how different part of a PPIns signalling unit might be targeted to control selective outputs that might engender more specific and therefore less toxic inhibitory outcomes
    corecore