
Statistical analysis of the Central-Europe Seis-

micity

Licia Faenza1, Sebastian Hainzl2 and Frank Scherbaum1

1 Institute of Earth Sciences,University of Potsdam, Karl-Liebknecht Str.

24, 14476 Potsdam - Golm, Germany.

2 GeoForschungsZentrum, Telegrafenberg, 14473 Potsdam, Germany

Accepted 2008, in Tectonophysisc; in original form 27/07/2007

Abbreviated title:Statistical analysis of the Central-Europe Seismicity

Corresponding author: Licia Faenza

Institute of Earth Sciences

University of Potsdam

Karl-Liebknecht Str. 24

14476 Potsdam - Golm

Germany.

Tel: +49 331 977 5846, fax: +49 331 977 5700

Now: at Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy. e-mail:

licia.faenza@ingv.it

1



Abstract

The aim of this paper is to characterize the spatio-temporal distribution of

Central-Europe seismicity. Specifically, by using a non-parametric statistical

approach, the proportional hazard model, leading to an empirical estimation

of the hazard function, we provide some constrains on the time behavior of

earthquake generation mechanisms. The results indicate that the most conspic-

uous characteristics of MW 4.0+ earthquakes is a temporal clustering lasting

a couple of years. This suggests that the probability of occurrence increases

immediately after a previous event. After a few years, the process becomes

almost time independent. Furthermore, we investigate the cluster properties

of the seismicity of Central-Europe, by comparing the obtained result with the

one of synthetic catalogs generated by the epidemic type aftershock sequences

(ETAS) model, which previously have been successfully applied for short term

clustering. Our results indicate that the ETAS is not well suited to describe

the seismicity as a whole, while it is able to capture the features of the short-

term behaviour. Remarkably, similar results have been previously found for

Italy using a higher magnitude threshold.

Keywords: Earthquake Distribution, Earthquake Forecast, Spatio-temporal

statistical analysis, Cluestre, Central Europe.
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1 Introduction

The statistical modeling of earthquakes is a fundamental ingredient for earth-

quake forecasting and for understanding earthquake generation mechanisms.

In principle, statistical analysis could be used for testing a variety of hypothe-

ses, such as the existence of seismic cycles or clustering of main events within

the spatio-temporal occurrence.

Despite a large number of investigations (Vere-Jones, 1970; Nishenko, 1985;

Ellsworth et al., 1998; Ogata, 1998; Kagan and Jackson, 2000; Posadas et al,

2002; Parson, 2005, and many other reference therein), so far the scientific

community could not reach a consensus on the general properties of the spatio-

temporal earthquake distribution (see as reference of earthquake statistic the

Working Group on California Earthquake Probability, 2003). Remarkably, the

differences between the models considered (i.e., Brownian Passage Time, Poi-

son and ETAS) are not only of statistical nature, but they imply partially op-

posing physical mechanism for earthquake occurrence. The testing of different

hypotheses can not be easily done because of the rarity of large earthquakes.

However, presently, huge efforts are spent to develop and implement standard

procedures to test the forecasting ability for seismicity (Schorlemmer et al.,

2007).

The aim of this paper is to give some insight on the spatio-temporal oc-

currence of earthquakes in Central-Europe. In a recent paper (Faenza et al.,

2003), a non-parametric and multivariate method has been applied in order

to estimate the spatio-temporal distribution of earthquakes in Italy . This

method drastically reduces the a priori assumption on the temporal domain

and allows to find a base-line hazard function, which trend versus time provides
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information on the earthquake generation mechanism.

The hazard function specifies the instantaneous occurrence rate at time T =

t, given that no earthquakes occurs before that time. There is a unequivocal

relationship between the hazard function and other statistics (i.e., the density

function, the survivor function and the cumulative function), and it defines

without ambiguity the time distribution of the point process. Moreover, its

trend in time shows if the statistic indicates any kind of cycling behaviour

(increasing trend), cluster behaviour (decreasing trend) or a random behaviour

(constant trend), as already discussed in Sornette and Knopoff (1997) and

Faenza et al. (2003). So far, in geosciences, the stress release model (Vere-

Jones, 1987; and many other application of it) and the ETAS model (Ogata,

1988, 1998) are based on the study of the hazard rate function.

The application of this methodology to the Italian seismicity (Faenza et al.,

2003; Cinti et al., 2004) and to the global (Faenza et al.,in press) displays clus-

tering behaviour for large events. In spite of the first order similarity with the

time behaviour of aftershock sequences, described by the ETAS model (Ogata,

1988), it was found the empirical data show a longer clustering time that the

ETAS activity (Faenza et al., 2004). These results may suggest the existence

of different physical mechanism for aftershocks and large (independent) events,

and/or that the ETAS model is not able to capture some important feature of

seismicity.

In this paper, we want to investigate if a similar behaviour can be found

with smaller events (M4.0+) in a low seismicity region (Central-Europe). In

particular, we will study to what extend the ETAS model is able to reproduce

the empirical hazard function for this data set.
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2 A statistical model for the spatio-temporal

distribution of earthquakes

In this work, we analyze from a statistical point of view the spatio-temporal

distribution of earthquakes in Central-Europe. For this purpose, we first apply

a statistical model called Proportional Hazard Model (PHM). Once the model

is set up, we will compare the results with that of an ETAS model calibrated to

the Central-Europe seismicity. This is done with the purpose to test whether

the ETAS model is able to represent the real seismicity or whether deviation

exists which can give us additional insight into the temporal occurrence of

earthquakes.

2.1 Proportional Hazard Model

The Proportional Hazard Model (PHM) was first introduced by Cox (1972) and

by Kalbfleisch and Prentice (1980). Here, we only briefly review the aspects

that make this model appealing for earthquake distribution. For a more de-

tailed description of the technical approach and the mathematical formulation

we refer to Kalbfleisch and Prentice (1980), Faenza et al. (2003), and Faenza

(2005). To set up the model, two types of random variables are considered: the

inter-event time (IET), i.e., the time interval between two consecutive events,

and the censoring time (CT), that is the time between the most recent event

in the catalog and the end of the catalog. The censoring time are important in

time dependent studies, where the probability of occurrence change with the

time elapsed from the most recent event. Let us consider a set of N random

variables and, for each of them, s explanatory variables (or covariates), that
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is, for the j-th element of N , there is a row vector z of dimension s bearing

any kind of information (quantitative and qualitative) that could influence the

occurrence of the events. The main problem consists of assessing the relation

between the distribution of the random variables and the vector of covariates

z. In PHM, the hazard function of a generic time t since the last event is:

λ(t; z) = λ0(t) exp(zβ) (1)

where λ0(t) is an arbitrary unspecified base-line hazard function and β is a

column vector of dimension s that gives the weight of each covariate. The

hazard function λ(t; z) is therefore composed of two parts, one with the tem-

poral dependence (λ0(·)), and the other with the information about the process

carried by other factors (exp(z β)).

There are three main aspects that make PHM appealing for earthquake

distributions.

Firstly, this model is non-parametric for the temporal domain because it

does not assume any specific form for base-line hazard function λ0(·); therefore

we do not impose any a priori assumption, regarding the temporal domain,

on the earthquake occurrence process. In other words, we do not choose any

arbitrary temporal distribution for fitting the events. Secondly, the method

allows the integration of different factors, such as geophysical, geological and

tectonic information, in the study of the earthquake forecasting. As a conse-

quence, it is possible to merge information coming from different disciplines in

the modeling of earthquake spatio-temporal distribution. Lastly, the technique

is stable because it allows us to consider at the same time all the available data

coming from different regions. This is possible through the vector of covariate,

z, that is attached to each one of the random variables and which can contain
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any spatial/tectonic information on the subregion where IETs and/or CTs are

sampled.

There is a key assumption below the model. The relationship between

the temporal behavior of the random variable and the information variable

z is addressed via a multiplicative factor. In equation 1 the covariates act

multiplicatively on the hazard function and they do not depend on time. This

means that the shape of the base-line λ0(·) versus time is always the same

for each area apart for a multiplicative factor that depends on the covariates.

So, from a physical point of view, the mechanism of earthquakes occurrence,

described by λ0(·), is the same for different areas; only the parameters of the

system can vary (i.e., exp(zβ)). This assumption reflects the fact that the

information variables can not modify the physics of earthquake occurrence,

changing, the general shape of the hazard function, but they can only rescale

its temporal trend.

The goal consists of estimating β and the non-parametric form of λ0(·) in

equation 1. The vector of coefficients gives the relative importance of each

covariate; λ0(·) gives important insights on the physics of the process. They

are estimated using a Maximum Likelihood Estimation strategy, the detail of

which can be found in Kalbfleisch and Prentice (1980) and Faenza (2005).

The evaluation of the hazard function is based on the empirical survivor

function. There is a biunivocal relationship between the hazard function and

the survivor function

S(t) = exp(−

∫ t

0

λ(u)du). (2)

For PHM, the relationship becomes

S(t; z) = exp[−

∫ t

0

λ0(u) exp(zβ)du] = S0(t)
exp(zβ). (3)
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A simple way to display the trend of λ0(·) is through the comparison of the

empirical survivor function S0(·) and the survivor function of a Poisson process.

We apply a double logarithmic transformation

u(t) = ln{− ln[S0(·)]} (4)

in order to obtain a RV, u(t), asymptotically normally distributed (e.g. Kalbfleisch

and Prentice, 1980; Faenza et al., 2003). The transformation (4) applied to

the survivor function of a Poisson process gives up(t) = lnλ + ln(t), where λ

is the mean of the distribution. Then, we can define the residuals ε(t) as

ε(t) = u(t) − up(t); (5)

The function ε(t) versus t shows the departures of the empirical survivor func-

tion from the theoretical Poisson distribution as a function of elapsed time.

By looking at equation (4), and at the relation between the survivor function

and the hazard function in equation (3), it is easy to figure out that the trend

of ε(t) has a shape comparable to the trend of λ0(t).

Checking the PHM model

An important step of every modeling is the validation of the model, and

checking if the assumptions behind it are in agreement with the real data.

For this purpose, we perform a validation test on an independent data set, i.e.,

data that have not been considered at any step of setting up the model. This is

done by dividing the available data in two parts, one used to set up the model

(the learning phase), and the other to check the model (the validation phase).

Each IET of the two data sets is transformed in order to form residuals (see

Kalbfleisch and Prentice, 1980; and Faenza et al., 2003). This transformation

is a sort of statistical standardization and it changes the random non-negative
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point process into a Poissonian process with rate 1 (see, for instance, Ogata,

1988). Therefore, if the model is appropriate, the residuals are expected to be-

have like an exponential distribution with λ = 1. The comparison between the

cumulative residuals and the theoretical exponential curve is checked through

a one-sample Kolmogorov-Smirnov test (e.g., Gibbons, 1971). This provides a

goodness-of-fit test for the model.

2.2 ETAS Model

The Epidemic Type Aftershocks-Sequences (ETAS) model is a stochastic marked

point process representing the occurrence of earthquakes of size larger than,

or equal to, a threshold magnitude M0, in the region and the period under

consideration (Ogata, 1988). As in other triggering models, it is based on the

principle that earthquakes are clustered in time and space because of occur-

rence of aftershocks; but, unlike those, it solves the debated problem to find the

best way to identify clusters and to classify events (as mainshocks, aftershocks

or foreshocks). In fact, although the overall seismicity is considered as the

superposition of a background activity and of seismicity induced by previous

earthquakes, its application to real data does not request any discrimination

of events. A complete description of this parametric model and its formulation

can be found in Ogata (1988, 1998).

In this paper, we used the 7-parameter space-time ETAS model; given the

epicentral coordinates (xi; yi), the magnitudes (mi) and the occurrence times

(ti), the conditional intensity function can be written as
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λ(t, m, x, y) =

[

µg(x, y) +
∑

i:ti<t

Keα(mi−M0)

(t − ti + c)p

(q − 1)d2(q−1)

π[(x − xi)2 + (y − yi)2 + d2]q

]

βe−β(m−M0) (6)

where µ, K, c, α and p are the ‘standard’ ETAS parameters (Ogata 1988;

1998); g(x, y) is the spatial density function of background events; β = b ln(10),

with b being the parameter of the Gutenberg-Richter relation. For the spa-

tial distribution of triggered aftershocks, we used the normalized function of

Console et al (2003), imposing however that the parameter d scales with mag-

nitude m, according to the empirical relation of Well and Coppersmith (1994):

d2 = d2
0100.91(m−M0) where d0 is a radius of a circular earthquake rupture with

magnitude M0.

3 Application and Results

3.1 The study of the real seismicity with PHM

For our analysis, we use the Grünthal and Wahlström (2003) catalogue. It is a

revised Mw catalogue for Central-Europe, which spans the time window 1300-

1993 with a threshold magnitude of Mw3.5. To cover the time window 1994-

2004, we use the International Seismological Center (ISC) on-line catalogue

(figure 1). In the latter catalogue, we convert all magnitude scales to Mw

according to the relations given by Grünthal and Wahlström (2003).

We analyze the events with Mw4.0+ with shallow hypocenter (depth <

50km) in the time 1960-2004 (360 events). The completeness of the data set

has been checked through the cumulative number of events and the Gutenberg-
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Richter relation (figure 2). A constant linear increasing trend stands for a

constant rate of earthquake production over time, and it is used to detect the

catalogue completeness, under the hypothesis of stationarity. The slope of the

line before 1980 and after 1990 suggests that the seismic rate is constant in

these two time window. During 1981-1989 the activity is lower. Similar non-

stationarity in the event production over decade has been already recognized

for other regions (Selva and Marzocchi, 2005; Lombardi and Marzocchi, 2007).

We have checked that this decrease is not an artefact by changing the dimension

of the area (excluding Romania, or the Apennines, or the Alps, or the Balkan,

respectively); increasing the depth up to 80 km; and decreasing or increasing

the threshold magnitude. We found the same trend in all cases. These tests

indicate that this reduced activity in the time 1981-1989 is not due to some

in-homogeneity in terms of magnitude allocations and/or density of array in

the regional seismic catalogue. The picture shows also that the Gutenberg-

Richter has heterogeneity in the magnitude allocations. In the magnitude

range 4.0−4.7 it has a slop b = 1.07±0.04 and in the range 4.8−6.3 the slope

is b = 1.30 ± 0.07.

The analysis of the whole Central-Europe may be strongly biased since,

due to the different tectonic domains, the events in this whole region can

be hardly considered as a homogeneous sample. In order to account for the

inhomogeneities in the spatial distribution of the events, we divide the surface

into areas of equally areal extension. Each node of the grid is the center of

a circle and, in order to cover the whole surface, its radius R is set equal to

the mean value of the half diagonal of the cell. In this paper, we present the

results for a grid with a radius of R = 50km (figure 2), but other radii and
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grids have been used to check the stability of the results.

In a following step, we select the areas that contain at least one earthquake;

for each circle the IETs among the earthquakes inside the circle, one CT rela-

tive to the time elapsed since the most recent event and a vector of covariate z

are evaluated. We analysed 123 areas. In the context of this application, z is a

three dimensional vector composed of i) the logarithm of the occurrence rate;

ii) the magnitude and iii) the depth of the events from which we calculate

the IET and the CT. As a consequence, the coordinates of the vector β are

co-related to the logarithm of the rate of occurrence (β1), the magnitude (β2)

and the depth (β3) of the seismic activity. The occurrence rate is calculated as

the number of independent events in each cell divided by the length of the used

catalogue (45 years). To identify the number of independent events we used

two distinct strategies. In the fist approach, we mark the independent events

in the whole catalogue by using the Reasenberg approach, with a standard

setting of parameters(Q = 10, P = 0.99,τ0 = 2day, τmax = 10days] (Reasen-

berg, 1985). Then, in the PHM application, for each cell we simply count the

number of events marked as independent. In the second approach, in each

cell we apply the statistical declustering technique developed by Hainzl et al.

(2006). This method provides the fraction of independent events for each cell.

The results of these two methodologies are not substantially different in terms

of the hazard function, probability map and synthetic test (see below). Using

the two approach allows comparison of the results and, therefore, adds to the

confidence to the conclusions. In the following, we show the results based on

the Reasenberg declustering algorithm.

The first important result is that the only element of the vector z which is
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statistically significant is the rate of occurrence, since the weight β1 = 1.1±0.1.

While β2 and β3 do not differ from zero. This means that the rate of occurrence

is the only covariate, among the analyzed ones, able to modify the statistic of

earthquake occurrence.

In figure 3, we show the residuals defined as the double logarithm trans-

formation of the empirical PHM survivor function minus the double logarithm

transformation of the Poisson survivor function (Kalbfleisch and Prentice,

1980; Faenza et al.; 2003, and Faenza, 2005). The trend versus time of the

residuals mimics the behaviour of the hazard function. The decreasing trend

means that the earthquakes tend to be more clustered than a simple Poisson

process. The negative trend lasts for a few years after an event; then it be-

comes almost flat as expected for a Poisson process. Here, we note that figure

3 is the plot of λ0(·). Since we found that only the rate of occurrence is able

to modify the hazard function; for each area λ(t; z) will be rescaled depending

on the value of its rate. Since β1 is positive, areas with higher rates will have

higher hazard functions.

To check the validity of our hypothesis, we applied the residual analysis to

the learning and validation data set. In figure 4, the goodness-of-fit for the

two data set is reported. We used the time interval 1960-1990 (232 events) for

the learning phase, and the one 1990-2004 (128 events) for the validation. The

figure plots in plate (a) and (b) the same theoretical curves (an exponential dis-

tribution with rate equals 1) and the real transformed residual, for the learning

(figure 4a) and validation (figure 4b) data sets. We quantify the goodness-of-fit

with a one-sample Kolmogorov-Smirnov test (see Gibbons, 1971). The same

theoretical curve fits very well both data sets. Plate (c) plots the two-sample
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Kolmogorov-Smirnov test for of the learning and validation data sets. The

levels of significance (α) at which the null hypothesis of equal distributions is

rejected are reported in figure. They are > 0.99; we can than conclude that

PHM is a suitable way to represent Mw4.0+ Central-Europe seismicity.

As a final step, we calculate from the empirical survivor function S(t; z) a

probability map of occurrence of the next shallow Mw4.0+ earthquakes. The

conditional probability of earthquake occurrence in the next τ years given the

CT (t) as the time elapsed since the most recent event

P (t, τ ; z) =
S(t; z) − S(t + τ ; z)

S(t; z)
. (7)

In figure 5a, we report the map for the probability of occurrence in the next

τ = 5 years. The areas with the higher probability of occurrence are the

Northern Apennines and Eastern Alps. Not surprisingly, these are the areas

with the higher seismic rate.

Since the seismic hazard in Romania is mostly driven by deep events, we

repeat the analysis outlined so far including also deep events. The coupling

between shallow and deep events is in general different from the one of shallow

seismicity only. PHM allows the integration in the same statistical analysis of

heterogeneous events, through the vector of covariate z, see section 2.1. Deep

events are mainly localized in the Vrancea region, Romania. We analyze 626

shallow plus deep events for the same time-magnitude window as before.

The result does not substantially differ from the one with only shallow

events. Once again, the only variable which is able to modify the statistic of

earthquake occurrence is the occurrence rate with β1 = 0.7±0.3. Remarkably,

the depth is not statistically relevant since β3 is not different from zero. The

hazard function has a decreasing trend and than a constant shape as the one
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from shallow events (figure 3 a and b). So the temporal clustering remains a

stable feature for representing the seismicity. While the length of the cluster

is almost the same, the inclusion of deep events leads to a marked decrease in

the intensity of the cluster and to a slower decay rate. The probability map

changes, since there is a significant increase of the rate in the Romania area

(figure 5b).

To quantify the forecast ability of PHM in Central Europe seismicity, we

applied the Molchan diagram (Molchan, 1990; Kossobokov, 2006), comparing

the results of PHM and Poisson model. The Molchan diagram plots the pro-

portion of missed events (ν) against the fraction of time-spacefraction on alarm

(τ). The forecasts are quantified for all possible threshold probabilities of alert

p0 ([0 : 1]). The extreme cases of τ = 0 for p0 = 1 and τ = 1 for p0 = 0 can

be seen as the optimistic and pessimistic point of view, respectively. In case

of purely random forecasts, the diagonal consists of the diagonal joining the

points (0-1) - (1-0). We forecasted the time January 1996 - December 2004,

9 years in total. The interval time of alert ∆tj is 6 months, and j = 1, 18

to obtain the total forecast time, 9 years. For the spatial distribution, we

consider active only the cells in which at least one event occurred in the time

1960-1995. Events in the time period 1996-2004 that occurred outside these

circles are considered lost and are not used in the forecast. We find that 9

out of 93 events occurred outside the active cells, therefore we can conclude

that 90% of the events occurred in the same areas as in the past; this stands

for a spatial clustering of earthquake occurrence; while 10% of events occurred

randomly in space. Nj defines the number of events occurred in time ∆tj,

with Ntot =
∑

j Nj = 84. For each active zone i of the grid, we calculate the
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probability pji for an event in the next δtj; to calibrate the models (PHM and

Poisson) we used the data available before the ∆tj under consideration. If pji

is higher than p0, the cell is in alarm for the jth time of alert. If an event

occurred in the cell i in ∆tj, the event was predicted. For each ∆tj we will

have a fraction νj of missed events. The calculation is done for p0 from 0 to

1. Figure 6 summarizes the results for PHM versus Poisson, for all ∆tj. The

value of ν is the average of the 18th νj, j = 1, · · · , 18 . The curve of a better

predictive model lies below the one of the a less predictive model, therefore

we can conclude that PHM has a higher predicative power than a Poisson

model. The figure shows also a departure of the Poisson model from the ran-

dom forecast (i.e., the diagonal) which probably stem from the fact that the

earthquakes occurrence is not homogeneous in space. Similar results for the

Molchan diagram are found for ∆tj equals to 1 year or 3 months.

3.2 ETAS synthetic test

3.2.1 Synthetic catalogue generation

For the detection of the 7 parameters of the ETAS model (equation 6) we use

the shallow events with Mw3.5+ from 1978 to 1994 (Grünthal and Wahlström,

2003), 162 events in total. Here, we choose a lower magnitude threshold

since aftershock properties are better confined for larger magnitude inter-

vals. For the joint inversion we follow Ogata et al. (1993). We fix the

parameters linked to the spatial function; q = 1.5 for consistency with the

theory of elasticity at infinite distance; d0 = 0.40km for Mw0 = 3.5 from

Well and Coppersmith (1994); we have therefore 5 free parameters. We ob-

tain µ[µ5perc, µ95perc] = 0.0202[0.0188, 0.0202] per day; K[K5perc, K95perc] =
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0.018[0.017, 0.023]; c[c5perc, c95perc] = 0.009[0.008, 0.017] per day;

p[p5perc, p95perc] = 0.98[0.97, 1.01], α[α5perc, α95perc] = 0.54[0.22, 0.64]. For the

error estimation, we repeat the parameters estimations for 1000 catalogues,

where Gaussian errors are added randomly to magnitude (with a standard

deviation of σ = 0.1) and location (σ = 5km) to the original catalogue.

For the generation of the synthetic ETAS catalogues, an inverse method

is used according to Felzer et al. (2002). In each realization, events are gen-

erated sequentially: first time, then magnitude and epicenter coordinate. For

the spatial distribution of independent events (g(x, y)), a Gaussian filter with

correlation distance equal to 20km is applied (Frankel, 1995). The declustering

method of Zhuang et al. (2002) is applied to detect independent events; 69%

events are marked as independent. A similar result has been founded with

the declustering procedure of Hainzl et al., 2006. The cascade process is set

for events with Mw3.5+, but later, we analyze only events with Mw4.0+. For

the selection of the magnitude, the b of the Gutenberg-Richter empirical low

is evaluated by using a Maximum Likelihood Estimation method (Marzocchi

and Sandri, 2003), and we get b = 0.91 ± 0.07.

3.2.2 PHM applied to synthetic catalogues

We generate 500 synthetic catalogues of time duration 45 years, and PHM is

applied to all of them separately, following the same procedure outlined in the

section 3.1.

In this synthetic study, the vector z is a two dimensional vector made by

the logarithm of the occurrence rate and the magnitude. The occurrence rate

is calculated as before, by using the two methodologies separately. The results
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shown here are the ones using the Reasenberg method, but we can draw the

same conclusion by using the Hainzl et al. method.

As before we find that the rate of occurrence is the only statistically sig-

nificant parameter, with an average β1 = 1.3 ± 0.1.

Figure 7 compares the residuals (see above) for the real catalogue (RC) and

the synthetic ones (SCs). Also in cases of SCs a negative trend is shown. This

means that earthquakes tend to be clustered. This is not surprising, since the

ETAS model is constructed imposing aftershock clustering. However, even if

the RC and the SCs show the same structure of the hazard function, with a

negative trend that becomes almost flat for larger times, the clustering time

is different for the RC and SCs. Figure 7 shows that the flattening occurred

in synthetic catalogues earlier than in the real one which occurs at about 2

years, which is determined by the algorithm of Mulargia and Tinti (1985) (see

below).

A quantitative test of the difference between the real and the synthetic

clustering properties can be performed through a two-sample Kolmogorov-

Smirnov test (e.g., Gibbons, 1971) on the empirical survivor functions (figure

8). In figure 9, we report the cumulative of the significance level α for the

rejection of the null hypothesis; it is small enough to reject the null hypothesis;

this means that the ETAS model is not able to capture the complete picture of

real seismicity. This means that for 85% of ETAS randomly generated samples

the Kolmogorov-Smirnov test would reject with 95% confidence the real series

as being drawn from the same distribution.

Going into the detail of the behaviour of the hazard function of the SCs,

it seems that its first part (short term) fits the real hazard function really
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well, while for longer times a substantial difference occurs. The real hazard

function has two different trends: it decreases till reaching the background.

By using a non-parametric technique developed by Mulargia and Tinti (1985),

we detect the time at which the two behaviours change. The changing-point

algorithm (Mulargia and Tinti, 1985) is a technique to see if two parts of a

sample belong to different populations. Applying the algorithm to the real

survivor function, we get a change point at 2.1 years (see figure 7). Applying

the two-sample Kolmogorov-Smirnov test (e.g., Gibbons, 1971) to the first

part (t ≤ 2.1 years) of the real and synthetic survivor function, we find a good

agreement between them, as shown in figure 9.

As a further test to verify the agreement between the ETAS model and

the short term part of the RC, we fit the real survivor function with the one

coming from an ETAS model:

S(t) = exp[−

∫ t

0

λ(u)du] = exp{λ0t −
k′

1 − p
[(c + t)1−p − c1−p]} (8)

where k′ is the average productivity factor. The purpose of this last fitting

procedure is to see if the p of the real hazard function is similar to the one found

in the ETAS inversion. In fact, p is the parameter which drives the temporal

decay in the hazard function. The fit gives a value of p = 0.57 considering the

long term, while it gives a value p = 0.92 if we consider only the events in the

short term.

Figure 10 reports a graph of the goodness-of-fit of the PHM applied to the

SCs. As in the real case, we used the first 30 years of catalogue for learning and

the second part for validation. The goodness-of-fit is quantitatively evaluated

through a one-sample Kolmogorov-Smirnov test (e.g., Gibbons, 1971). The

significance levels at which the null hypothesis of equal distribution is rejected
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is > 0.95 in all simulations.

4 Summary and Conclusions

In this paper, we perform a statistical analysis of the spatio-temporal distribu-

tion of Central-Europe seismicity. We have applied a non-parametric technique

in order to characterize the features of the spatio-temporal earthquake occur-

rence. In particular, we have compared these non-parametric results with that

of an ETAS type seismicity.

Our analysis shows that clustering dominates the Mw4.0+ earthquake ac-

tivity in Central-Europe in the first two years. Subsequently, the events tend

to occur as Poisson random events, since the hazard function shows a constant

shape. The physical reason for the short-term clustering is likely to be linked

to stress interactions between faults (Stein, 1994).

Remarkably, a similar result has been found in previous studies on large

time and magnitude scale by Kagan (1991); Kagan and Jackson (1991); Kagan

and Jackson (2000); Cinti et al. (2004) and Faenza et al., (submitted). There-

fore, it seems that the clustering is a scale independent aspect with respect to

the magnitude of the events (from low-medium to large) and spatial domain

(for a regional to a global scale).

The inclusion of deep events, mostly located in the Vrancea (Romania)

regions, yields a transform of the hazard function in agreement with the ob-

servation that such earthquakes have significantly less aftershocks lasting for

much shorter times than comparable events at shallow depth (Trifu and Ra-

sulian, 1991; Enescu et al., 2005).

The comparison with ETAS-type seismicity underlines that the space-time
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ETAS model is able to capture the behaviour of real seismicity on the short

time scale, i.e., for a couple of years. This short term behaviour can be linked

to the aftershocks activity. While, in the real seismicity, the clustering stays

longer; the ETAS activity returns to the constant behaviour (Poisson) within

a shorter time. A possible reason can be addressed to visco-elastic relaxation

processes, introducing a long term memory effect which is not accounted for

in the ETAS parameterization.
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Figure 1: Target area: The dark circles refer to the selected areas, while the

black dots are the earthquakes used in the analysis, with Mw4.0+ since 1960

(Grünthal and Wahlström, 2003; ICS).
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Figure 2: Top panel: Cumulative number of events as a function of time.

The constant linear trend stands for a constant rate of earthquake production.

Bottom panel: Frequency-magnitude distribution for the of the time 1960-

2004. The straight line suggests the completeness of the data set.
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Figure 3: Plot of the residuals for the real catalogue as a function of the time

elapsed since the most recent event (top panel, in logarithm 10 for the time;

bottom panel, linear time scale. The residuals mimic the time behaviour of

the λ0(·). The result is shown for shallow seismicity alone (depth ≤ 50km)

and for shallow and deep events together.
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Figure 4: (a) Empirical (squares) and theoretical (solid line) cumulative func-

tions for the learning data set. (b) The same as for (a), but now for the

validation data set. (c) Two-sample Kolmogorov-Smirnov test for the learning

empirical (black squares) and validation empirical (gray circles) cumulative

functions. The plot shows also the theoretical curve.
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Figure 5: Probability map for Mw4.0+ earthquakes in Central-Europe in the

next 5 years: (a) shallow and (b) shallow plus deep events.
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Figure 6: Molchan diagram; it represents the fraction of missed events (ν)

against the fraction of time-space alarm (τ). The figure shows also the diagonal

as the purely random forecast (solid black line); with its 99% (dashed gray line)

and 95% confident limit (dashed dark line).

34



−6 −5 −4 −3 −2 −1 0 1 2
−1

0

1

2

3

4

5

6

7

8

9

log (elapsed time[years])

ε(
x)

=
u(

x)
−

u p(x
)

Figure 7: Plot of the residuals of the real catalogue (white circles) and synthetic

data (squares) as a function of the elapsed time since the most recent event.

The dash black line marks the value of the changing-point between short and

long term behaviour.The picture shows also the 1-st, 5-th, 95-th and 99-th per

cent percentiles of the distribution, in increasing gray scale.

35



−6 −5 −4 −3 −2 −1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log(elapsed time[years])

S
ur

vi
vo

r 
fu

nc
tio

n

Figure 8: Plot of the empirical survivor function of the real data (white circles)

and synthetic one (squares). The picture shows also the 1-st, 5-th, 95-th and

99-th per cent percentiles of the distribution, in increasing gray scale.
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Figure 9: Empirical cumulative function of the significance level α of the two-

sample Kolmogorov-Smirnov test (e.g., Gibbons, 1971).
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Figure 10: (a) Empirical (squares) and theoretical (solid line) cumulative func-

tions for the learning data set. (b) The same as for (a), but now for the

validation data set.
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