170 research outputs found

    Density Changes in Low Pressure Gas Targets for Electron Scattering Experiments

    Get PDF
    A system of modular sealed gas target cells has been developed for use in electron scattering experiments at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). This system was initially developed to complete the MARATHON experiment which required, among other species, tritium as a target material. Thus far, the cells have been loaded with the gas species 3H, 3He, 2H, 1H and 40Ar and operated in nominal beam currents of up to 22.5 uA in Jefferson Lab's Hall A. While the gas density of the cells at the time of loading is known, the density of each gas varies uniquely when heated by the electron beam. To extract experimental cross sections using these cells, density dependence on beam current of each target fluid must be determined. In this study, data from measurements with several beam currents within the range of 2.5 to 22.5 uA on each target fluid are presented. Additionally, expressions for the beam current dependent fluid density of each target are developed.Comment: 8 pages, 12 figures, 4 table

    First Measurement of the Ti (e,e′) X Cross Section at Jefferson Lab

    Get PDF
    To probe CP violation in the leptonic sector using GeV energy neutrino beams in current and future experiments using argon detectors, precise models of the complex underlying neutrino and antineutrino interactions are needed. The E12-14-012 experiment at Jefferson Lab Hall A was designed to perform a combined analysis of inclusive and exclusive electron scatterings on both argon (N=22) and titanium (Z=22) nuclei using GeV-energy electron beams. The measurement on titanium nucleus provides essential information to understand the neutrino scattering on argon, large contribution to which comes from scattering off neutrons. Here we report the first experimental study of electron-titanium scattering as double-differential cross section at beam energy E=2.222 GeV and electron-scattering angle θ=15.541^{∘}, measured over a broad range of energy transfer, spanning the kinematical regions in which quasielastic scattering and delta production are the dominant reaction mechanisms. The data provide valuable new information needed to develop accurate theoretical models of the electromagnetic and weak cross sections of these complex nuclei in the kinematic regime of interest to neutrino experiments.National Science Foundation (U.S.) (CAREER Grant PHY-1352106

    Measurement of the Cross Sections for Inclusive Electron Scattering in the E12-14-012 Experiment at Jefferson Lab

    Get PDF
    The E12-14-012 experiment performed at Jefferson Lab Hall A has collected inclusive electron-scattering data for different targets at the kinematics corresponding to beam energy 2.222 GeV and scattering angle 15.54°. Here we present a comprehensive analysis of the collected data and compare the double-differential cross sections for inclusive scattering of electrons, extracted using solid targets (aluminum, carbon, and titanium) and a closed argon-gas cell. The data extend over broad range of energy transfer, where quasielastic interaction, Δ-resonance excitation, and inelastic scattering yield contributions to the cross section. The double-differential cross sections are reported with high precision (∼3%) for all targets over the covered kinematic range

    First Measurement of the Ti(e,e)X(e,e^\prime){\rm X} Cross Section at Jefferson Lab

    Get PDF
    To probe CP violation in the leptonic sector using GeV energy neutrino beams in current and future experiments using argon detectors, precise models of the complex underlying neutrino and antineutrino interactions are needed. The E12-14-012 experiment at Jefferson Lab Hall A was designed to perform a combined analysis of inclusive and exclusive electron scatterings on both argon (N=22N = 22) and titanium (Z=22Z = 22) nuclei using GeV energy electron beams. The measurement on titanium nucleus provides essential information to understand the neutrino scattering on argon, large contribution to which comes from scattering off neutrons. Here we report the first experimental study of electron-titanium scattering as double differential cross section at beam energy E=2.222E=2.222 GeV and electron scattering angle θ=15.541\theta = 15.541 deg, measured over a broad range of energy transfer, spanning the kinematical regions in which quasielastic scattering and delta production are the dominant reaction mechanisms. The data provide valuable new information needed to develop accurate theoretical models of the electromagnetic and weak cross sections of these complex nuclei in the kinematic regime of interest to neutrino experiments.Comment: 6 pages, 5 figures. Version published in Physical Review

    Measurement of the Ar(e,e^\prime p) and Ti(e,e^\prime p) cross sections in Jefferson Lab Hall A

    Full text link
    The E12-14-012 experiment, performed in Jefferson Lab Hall A, has collected exclusive electron-scattering data (e,e^\primep) in parallel kinematics using natural argon and natural titanium targets. Here, we report the first results of the analysis of the data set corresponding to beam energy of 2,222 MeV, electron scattering angle 21.5 deg, and proton emission angle -50 deg. The differential cross sections, measured with \sim4% uncertainty, have been studied as a function of missing energy and missing momentum, and compared to the results of Monte Carlo simulations, obtained from a model based on the Distorted Wave Impulse Approximation.Comment: 14 pages, 8 figures (submitted to PRC

    Elimination Therapy for the Endemic Malarias

    Get PDF
    Most malaria diagnosed outside endemic zones occurs in patients experiencing the consequences of what was likely a single infectious bite by an anopheline mosquito. A single species of parasite is nearly always involved and expert opinion on malaria chemotherapy uniformly prescribes species- and stage-specific treatments. However the vast majority of people experiencing malaria, those resident in endemic zones, do so repeatedly and very often with the involvement of two or more species and stages of parasite. Silent forms of these infections—asymptomatic and beyond the reach of diagnostics—may accumulate to form substantial and unchallenged reservoirs of infection. In such settings treating only the species and stage of malaria revealed by diagnosis and not others may not be sensible or appropriate. Developing therapeutic strategies that address all species and stages independently of diagnostic evidence may substantially improve the effectiveness of the control and elimination of endemic malaria

    Cross-Section Measurement of Virtual Photoproduction of Iso-Triplet Three-Body Hypernucleus, ⋀nn

    Get PDF
    Missing-mass spectroscopy with the 3H(e, e′K+) reaction was carried out at Jefferson Lab’s (JLab) Hall A in Oct–Nov, 2018. The differential cross section for the 3H(γ∗, K+)Λnn was deduced at ω = Ee − Ee′ = 2.102 GeV and at the forward K+-scattering angle (0° ≤ θγ∗K ≤ 5°) in the laboratory frame. Given typical predicted energies and decay widths, which are (BΛ, Γ) = (−0.25, 0.8) and (−0.55, 4.7) MeV, the cross sections were found to be 11.2 ± 4.8(stat.)+4.1−2.1(sys.) and 18.1 ± 6.8(stat.)+4.2−2.9(sys.) nb/sr, respectively. The obtained result would impose a constraint for interaction models particularly between Λ and neutron by comparing to theoretical calculations

    Hepatitis C Virus Infection May Lead to Slower Emergence of P. falciparum in Blood

    Get PDF
    International audienceBACKGROUND: Areas endemic for Plasmodium falciparum, hepatitis B virus (HBV) and hepatitis C virus (HCV) overlap in many parts of sub-Saharan Africa. HBV and HCV infections develop in the liver, where takes place the first development stage of P. falciparum before its further spread in blood. The complex mechanisms involved in the development of hepatitis may potentially influence the development of the liver stage of malaria parasites. Understanding the molecular mechanisms of these interactions could provide new pathophysiological insights for treatment strategies in Malaria. METHODOLOGY: We studied a cohort of 319 individuals living in a village where the three infections are prevalent. The patients were initially given a curative antimalarial treatment and were then monitored for the emergence of asexual P. falciparum forms in blood, fortnightly for one year, by microscopy and polymerase chain reaction. PRINCIPAL FINDINGS: At inclusion, 65 (20.4%) subjects had detectable malaria parasites in blood, 36 (11.3%) were HBV chronic carriers, and 61 (18.9%) were HCV chronic carriers. During follow-up, asexual P. falciparum forms were detected in the blood of 203 patients. The median time to P. falciparum emergence in blood was respectively 140 and 120 days in HBV- and HBV+ individuals, and 135 and 224 days in HCV- and HCV+ individuals. HCV carriage was associated with delayed emergence of asexual P. falciparum forms in blood relative to patients without HCV infection. CONCLUSIONS: This pilot study represents first tentative evidence of a potential epidemiological interaction between HBV, HCV and P. falciparum infections. Age is an important confounding factor in this setting however multivariate analysis points to an interaction between P. falciparum and HCV at the hepatic level with a slower emergence of P. falciparum in HCV chronic carriers. More in depth analysis are necessary to unravel the basis of hepatic interactions between these two pathogens, which could help in identifying new therapeutic approaches against malaria
    corecore