999 research outputs found

    Hydrological post-processing based on approximate Bayesian computation (ABC)

    Full text link
    [EN] This study introduces a method to quantify the conditional predictive uncertainty in hydrological post-processing contexts when it is cumbersome to calculate the likelihood (intractable likelihood). Sometimes, it can be difficult to calculate the likelihood itself in hydrological modelling, specially working with complex models or with ungauged catchments. Therefore, we propose the ABC post-processor that exchanges the requirement of calculating the likelihood function by the use of some sufficient summary statistics and synthetic datasets. The aim is to show that the conditional predictive distribution is qualitatively similar produced by the exact predictive (MCMC post-processor) or the approximate predictive (ABC post-processor). We also use MCMC post-processor as a benchmark to make results more comparable with the proposed method. We test the ABC post-processor in two scenarios: (1) the Aipe catchment with tropical climate and a spatially-lumped hydrological model (Colombia) and (2) the Oria catchment with oceanic climate and a spatially-distributed hydrological model (Spain). The main finding of the study is that the approximate (ABC post-processor) conditional predictive uncertainty is almost equivalent to the exact predictive (MCMC post-processor) in both scenarios.This study was partially supported by the Departamento del Huila Scholarship Program No. 677 (Colombia) and Colciencias, by the Spanish Research Project TETIS-MED (ref. CGL2014-58127-C3-3-R) and TETIS-CHANGE (ref.RTI2018-093717-B-I00). Also, G. Adelfio's research has been supported by the national grant of the Italian Ministry of Education University and Research (MIUR) for the PRIN-2015 program, "Complex space-time modelling and functional analysis for probabilistic forecast of seismic events'. The authors also wish to thank the editor and the two anonymous reviewers for their thoughtful comments for the revision of the manuscript.Romero-Cuellar, J.; Abbruzzo, A.; Adelfio, G.; Francés, F. (2019). Hydrological post-processing based on approximate Bayesian computation (ABC). Stochastic Environmental Research and Risk Assessment. 33(7):1361-1373. https://doi.org/10.1007/s00477-019-01694-yS13611373337Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162(4):2025–2035Blackwell D, Dubins L (1962) Merging of opinions with increasing information. Ann Math Stat 33(3):882–886Bogner K, Liechti K, Zappa M (2016) Post-processing of stream flows in Switzerland with an emphasis on low flows and floods. Water 8(4):115Brown JD, Seo D-J (2010) A nonparametric postprocessor for bias correction of hydrometeorological and hydrologic ensemble forecasts. J Hydrometeorol 11(3):642–665Butts MB, Payne JT, Kristensen M, Madsen H (2004) An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation. J Hydrol 298(1):242–266Coccia G, Todini E (2011) Recent developments in predictive uncertainty assessment based on the model conditional processor approach. Hydrol Earth Syst Sci 15:3253–3274Csillery K, Francois O, Blum MGB (2012) abc: an R package for approximate Bayesian computation (abc). Methods Ecol Evol 3:475–479Diaconis P, Freedman D (1986) On the consistency of bayes estimates. Ann Stat 14(1):1–26Diks CGH, Vrugt JA (2010) Comparison of point forecast accuracy of model averaging methods in hydrologic applications. Stoch Environ Res Risk Assess 24(6):809–820Drovandi CC, Pettitt AN (2011) Likelihood-free Bayesian estimation of multivariate quantile distributions. Comput Stat Data Anal 55(9):2541–2556Evin G, Thyer M, Kavetski D, McInerney D, Kuczera G (2014) Comparison of joint versus postprocessor approaches for hydrological uncertainty estimation accounting for error autocorrelation and heteroscedasticity. Water Resour Res 50(3):2350–2375Fearnhead P, Prangle D (2012) Constructing summary statistics for approximate bayesian computation: semi-automatic approximate Bayesian computation. J R Stat Soc Ser B Stat Methodol 74(3):419–474Fenicia F, Kavetski D, Reichert P, Albert C (2018) Signature-domain calibration of hydrological models using approximate Bayesian computation: empirical analysis of fundamental properties. Water Resour Res 54:3958–3987Francés F, Vélez JI, Vélez JJ (2007) Split-parameter structure for the automatic calibration of distributed hydrological models. J Hydrol 332(1):226–240Frazier DT, Maneesoonthorn W, Martin GM, McCabe BP (2019) Approximate Bayesian forecasting. Int J Forecast 35(2):521–539Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7(4):457–472Gelman A, Stern HS, Carlin JB, Dunson DB, Vehtari A, Rubin DB (2013) Bayesian data analysis. Chapman and Hall/CRC, Boca RatonGlahn HR, Lowry DA (1972) The use of model output statistics (mos) in objective weather forecasting. J Appl Meteorol 11(8):1203–1211Gupta HV, Kling H, Yilmaz KK, Martinez GF (2009) Decomposition of the mean squared error and nse performance criteria: implications for improving hydrological modelling. J Hydrol 377(1):80–91Haario H, Saksman E, Tamminen J (2001) An adaptive metropolis algorithm. Bernoulli 7(2):223–242Kavetski D, Fenicia F, Reichert P, Albert C (2018) Signature-domain calibration of hydrological models using approximate Bayesian computation: theory and comparison to existing applications. Water Resour Res 54:4059–4083Khajehei S, Moradkhani H (2017) Towards an improved ensemble precipitation forecast: a probabilistic post-processing approach. J Hydrol 546:476–489Klein B, Meissner D, Kobialka H-U, Reggiani P (2016) Predictive uncertainty estimation of hydrological multi-model ensembles using pair-copula construction. Water 8(4):125Krzysztofowicz R, Kelly KS (2000) Hydrologic uncertainty processor for probabilistic river stage forecasting. Water Resour Res 36(11):3265–3277Laio F, Tamea S (2007) Verification tools for probabilistic forecasts of continuous hydrological variables. Hydrol Earth Syst Sci 11(4):1267–1277Li B, Liang Z, He Y, Hu L, Zhao W, Acharya K (2017) Comparison of parameter uncertainty analysis techniques for a topmodel application. Stoch Environ Res Risk Assess 31(5):1045–1059Liang Z, Chang W, Li B (2012) Bayesian flood frequency analysis in the light of model and parameter uncertainties. Stoch Environ Res Risk Assess 26(5):721–730Lindley DV, Smith AFM (1972) Bayes estimates for the linear model. J R Stat Soc Ser B Methodol 34(1):1–41Liu Y, Gupta HV (2007) Uncertainty in hydrologic modeling: toward an integrated data assimilation framework. Water Resour Res 43(7):W07401Madadgar S, Moradkhani H (2014) Improved Bayesian multimodeling: integration of copulas and Bayesian model averaging. Water Resour Res 50(12):9586–9603Marin J-M, Pudlo P, Robert CP, Ryder RJ (2012) Approximate Bayesian computational methods. Stat Comput 22(6):1167–1180Marjoram P, Molitor J, Plagnol V, Tavaré S (2003) Markov chain monte carlo without likelihoods. Proc Natl Acad Sci 100(26):15324–15328Marshall L, Nott D, Sharma A (2004) A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling. Water Resour Res 40(2):W02501Mengersen KL, Pudlo P, Robert CP (2013) Bayesian computation via empirical likelihood. Proc Natl Acad Sci 110(4):1321–1326Montanari A, Brath A (2004) A stochastic approach for assessing the uncertainty of rainfall-runoff simulations. Water Resour Res 40:W01106. https://doi.org/10.1029/2003WR002540Montanari A, Grossi G (2008) Estimating the uncertainty of hydrological forecasts: a statistical approach. Water Resour Res 44:W00B08. https://doi.org/10.1029/2008WR006897Montanari A, Koutsoyiannis D (2012) A blueprint for process-based modeling of uncertain hydrological systems. Water Resour Res 48(9):W09555Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900Nott DJ, Marshall L, Brown J (2011) Generalized likelihood uncertainty estimation (glue) and approximate Bayesian computation: what’s the connection? Water Resour Res 48(12):W12602Price LF, Drovandi CC, Lee A, Nott DJ (2018) Bayesian synthetic likelihood. J Comput Graph Stat 27(1):1–11Pritchard JK, Seielstad MT, Perez-Lezaun A, Feldman MW (1999) Population growth of human y chromosomes: a study of y chromosome microsatellites. Mol Biol Evol 16(12):1791–1798R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaRaftery AE, Gneiting T, Balabdaoui F, Polakowski M (2005) Using Bayesian model averaging to calibrate forecast ensembles. Mon Weather Rev 133(5):1155–1174Reichert P, Langhans SD, Lienert J, Schuwirth N (2015) The conceptual foundation of environmental decision support. J Environ Manag 154:316–332Robert CP (2016) Approximate bayesian computation: A survey on recent results. In: Cools R, Nuyens D (eds) Monte Carlo and Quasi-Monte Carlo Methods. Springer, Cham, pp 185–205Romero-Cuéllar J, Buitrago-Vargas A, Quintero-Ruiz T, Francés F (2018) Modelling the potential impacts of climate change on the hydrology of the Aipe river basin in Huila, Colombia. Ribagua 5(1):63–78Schefzik R, Thorarinsdottir TL, Gneiting T (2013) Uncertainty quantification in complex simulation models using ensemble copula coupling. Stat Sci 28(4):616–640Schoups G, Vrugt JA (2010) A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors. Water Resour Res 46(10):W10531Schoups G, van de Giesen NC, Savenije HHG (2008) Model complexity control for hydrologic prediction. Water Resour Res 44(12):W00B03Shafii M, Tolson B, Matott LS (2014) Uncertainty-based multi-criteria calibration of rainfall-runoff models: a comparative study. Stoch Environ Res Risk Assess 28(6):1493–1510Sikorska AE, Montanari A, Koutsoyiannis D (2015) Estimating the uncertainty of hydrological predictions through data-driven resampling techniques. J Hydrol Eng 20(1):A4014009Sisson SA, Fan Y, Tanaka MM (2007) Sequential Monte Carlo without likelihoods. Proc Natl Acad Sci 104(6):1760–1765Solomatine DP, Shrestha DL (2009) A novel method to estimate model uncertainty using machine learning techniques. Water Resour Res 45:W00B11. https://doi.org/10.1029/2008WR006839Tavaré S, Balding DJ, Griffiths RC, Donnelly P (1997) Inferring coalescence times from DNA sequence data. Genetics 145(2):505–518Thomas H (1981) Improved methods for national water assessment, water resources contract: WR15249270. Technical report, Harvard University, CambridgeThyer M, Renard B, Kavetski D, Kuczera G, Franks SW, Srikanthan S (2009) Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: a case study using Bayesian total error analysis. Water Resour Res 45:W00B14. https://doi.org/10.1029/2008WR006825Tian Y, Nearing GS, Peters-Lidard CD, Harrison KW, Tang L (2016) Performance metrics, error modeling, and uncertainty quantification. Mon Weather Rev 144(2):607–613Todini E (2008) A model conditional processor to assess predictive uncertainty in flood forecasting. Int J River Basin Manag 6(2):123–137Tran M-N, Nott DJ, Kohn R (2017) Variational bayes with intractable likelihood. J Comput Graph Stat 26(4):873–882Turner BM, Van Zandt T (2012) A tutorial on approximate Bayesian computation. J Math Psychol 56(2):69–85van Oijen M (2017) Bayesian methods for quantifying and reducing uncertainty and error in forest models. Curr For Rep 3(4):269–280Vélez JJ, Puricelli M, López Unzu F, Francés F (2009) Parameter extrapolation to ungauged basins with a hydrological distributed model in a regional framework. Hydrol Earth Syst Sci 13(2):229–246Vrugt JA, Robinson BA (2007) Treatment of uncertainty using ensemble methods: comparison of sequential data assimilation and Bayesian model averaging. Water Resour Res 43(1):W01411Vrugt JA, Sadegh M (2013) Toward diagnostic model calibration and evaluation: approximate Bayesian computation. Water Resour Res 49:4335–4345Waerden BVD (1953) Order tests for the two-sample problem and their power. Indag Math Proc 56:80Wagener T, Gupta HV (2005) Model identification for hydrological forecasting under uncertainty. Stoch Environ Res Risk Assess 19(6):378–387Wang Q, Robertson D, Chiew FS (2009) A bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites. Water Resour Res 45(5):W05407Weerts AH, Winsemius HC, Verkade JS (2011) Estimation of predictive hydrological uncertainty using quantile regression: examples from the national flood forecasting system (england and wales). Hydrol Earth Syst Sci 15(1):255–265Wentao L, Qingyun D, Chiyuan M, Aizhong Y, Wei G, Zhenhua D (2017) A review on statistical postprocessing methods for hydrometeorological ensemble forecasting. Wiley Interdiscip Rev Water 4(6):e1246Wilby RL, Harris I (2006) A framework for assessing uncertainties in climate change impacts: low-flow scenarios for the river thames, UK. Water Resour Res 42(2):W02419Woldemeskel F, McInerney D, Lerat J, Thyer M, Kavetski D, Shin D, Tuteja N, Kuczera G (2018) Evaluating post-processing approaches for monthly and seasonal streamflow forecasts. Hydrol Earth Syst Sci 22:6257–6278. https://doi.org/10.5194/hess-22-6257-2018Ye A, Duan Q, Yuan X, Wood EF, Schaake J (2014) Hydrologic post-processing of MOPEX streamflow simulations. J Hydrol 508:147–156Yoon S, Cho W, Heo J-H, Kim CE (2010) A full bayesian approach to generalized maximum likelihood estimation of generalized extreme value distribution. Stoch Environ Res Risk Assess 24(5):761–770Zhang X, Zhao K (2012) Bayesian neural networks for uncertainty analysis of hydrologic modeling: a comparison of two schemes. Water Resour Manag 26(8):2365–2382Zhao L, Duan Q, Schaake J, Ye A, Xia J (2011) A hydrologic post-processor for ensemble streamflow predictions. Adv Geosci 29:51–59Zhu W, Marin JM, Leisen F (2016) A bootstrap likelihood approach to Bayesian computation. Aust N Z J Stat 58(2):227–24

    Bristlebots in swarm robotics - new approaches in modeling and agent development

    Get PDF
    Bristlebots are vibration-driven mobile robots. They are characterized by small size, high speed, simple design and low costs of production and application, which are ad- vantageous qualities for agents of swarm robotic systems. In this paper, new ap- proaches in modeling and development of swarm agents are given. It is shown that a simple mass point model can be used to simulate the motion behavior of a bristlebot as complex as necessary for swarm studies. A robot prototype is presented, which has on-board everything needed as a robotic agent. The results of simulations and exper-iments are presented and compared

    Dynamic & Cyclic behaviour of ballast in the long term as determined in Cedex's track box

    Full text link
    The 6 cylinder servo-hydraulic loading system of CEDEX's track box (250 kN, 50 Hz) has been recently implemented with a new piezoelectric loading system (±20 kN, 300 Hz) allowing the incorporation of low amplitude high frequency dynamic load time histories to the high amplitude low frequency quasi-static load time histories used so far in the CEDEX's track box to assess the inelastic long term behavior of ballast under mixed traffic in conventional and high- speed lines. This presentation will discuss the results obtained in the first long-duration test performed at CEDEX's track box using simultaneously both loading systems, to simulate the pass-by of 6000 freight vehicles (1M of 225 kN axle loads) travelling at a speed of 120 km/h over a line with vertical irregularities corresponding to a medium quality lin3e level. The superstructure of the track tested at full scale consisted of E 60 rails, stiff rail pads (mayor que 450 kN/mm), B90.2 sleepers with USP 0.10 N/mm and a 0.35 m thick ballast layer of ADIF first class. A shear wave velocity of 250 m/s can be assumed for the different layers of the track sub-base. The ballast long-term settlements will be compared with those obtained in a previous long-duration quasi- static test performed in the same track, for the RIVAS [EU co-funded] project, in which no dynamic loads where considered. Also, the results provided by a high diameter cyclic triaxial cell with ballast tested in full size will be commented. Finally, the progress made at CEDEX's Geotechnical Laboratory to reproduce numerically the long term behavior of ballast will be discussed

    Emergent Spin-Filter at the interface between Ferromagnetic and Insulating Layered Oxides

    Get PDF
    We report a strong effect of interface-induced magnetization on the transport properties of magnetic tunnel junctions consisting of ferromagnetic manganite La0.7_{0.7}Ca0.3_{0.3}MnO3_{3} and insulating cuprate PrBa2_{2}Cu3_{3}O7_{7}. Contrary to the typically observed steady increase of the tunnel magnetoresistance with decreasing temperature, this system exhibits a sudden anomalous decrease at low temperatures. Interestingly, this anomalous behavior can be attributed to the competition between the positive spin polarization of the manganite contacts and the negative spin-filter effect from the interface-induced Cu magnetization.Comment: 5 pages, 4 figures, with supplemental materials (2 figures). Physical Review Letters, in pres

    Global Plant Virus Management:  Diagnostics, Surveillance, and Modelling

    Get PDF
    corecore