491 research outputs found

    A monoclonal antibody to the gp120-CD4 complex has differential effects on HIV-induced syncytium formation and viral infectivity

    Get PDF
    A murine monoclonal antibody (MAb F-91-55) raised against the complex of soluble CD4 and human immunodeficiency virus type 1 (HIV-1) gp120 had previously been found to inhibit syncytium formation without inhibiting the interaction of CD4 with gp120, and its binding site was localized within the first two domains (D1/D2) of CD4. We investigated whether this antibody inhibited the infectivity of HIV-1 in the CD4+ T cell lines A3.01, Sup-T1 and H9. We also examined the effect of the antibody on syncytium formation between these cells and chronically infected H9 cells. Syncytium formation was found to depend critically on the incubation medium used. The effect of the MAb on HIV-1 infectivity was very limited with A3.01 and Sup-T1 cells, although it inhibited syncytium formation between A3.01 or Sup-T1 and chronically infected H9 cells. In contrast, the MAb inhibited significantly the infectivity of HIV-1 in H9 cells, but it also inhibited syncytium formation between H9 and chronically infected H9 cells to a greater extent than in the case of the other cell lines. Our results indicate that cellular systems used for syncytium assays differ in their susceptibility to inhibitory antibodies. In the A3.01 and Sup-T1 cell systems, the differences in the ability of the MAb to block viral entry or syncytium formation raise the possibility that the mechanisms of interaction of gp120/gp41 with cell membrane CD4 may be different in cell-cell and virus-cell membrane fusion

    Citalopram plus low-dose pipamperone versus citalopram plus placebo in patients with major depressive disorder: an 8-week, double-blind, randomized study on magnitude and timing of clinical response

    Get PDF
    Background: Selective serotonin reuptake inhibitors take several weeks to achieve their full antidepressant effects. Post-synaptic 5-HT<sub>2A</sub> receptor activation is thought to be involved in this delayed therapeutic effect. Pipamperone acts as a highly selective 5-HT<sub>2A</sub>/D<sub>4</sub> antagonist when administered in low doses. The purpose of this study was to compare citalopram 40 mg once daily plus pipamperone 5 mg twice daily (PipCit) versus citalopram plus placebo twice daily for magnitude and onset of therapeutic effect. Method: An 8-week, randomized, double-blind study in patients with major depressive disorder was carried out. Results: The study population comprised 165 patients (citalopram and placebo, n=82; PipCit, n=83) with a mean baseline Montgomery–Asberg Depression Rating Scale (MADRS) score of 32.6 (S.D.=5.5). In the first 4 weeks, more citalopram and placebo than PipCit patients discontinued treatment (18% v. 4%, respectively, p=0.003). PipCit patients had significantly greater improvement in MADRS score at week 1 [observed cases (OC), p=0.021; last observation carried forward (LOCF), p=0.007] and week 4 (LOCF, p=0.025) but not at week 8 compared with citalopram and placebo patients. Significant differences in MADRS scores favoured PipCit in reduced sleep, reduced appetite, concentration difficulties and pessimistic thoughts. Mean Clinical Global Impression–Improvement scores were significantly improved after 1 week of PipCit compared with citalopram and placebo (OC and LOCF, p=0.002). Conclusions: Although the MADRS score from baseline to 8 weeks did not differ between groups, PipCit provided superior antidepressant effects and fewer discontinuations compared with citalopram and placebo during the first 4 weeks of treatment, especially in the first week

    A statistical mechanics approach to autopoietic immune networks

    Full text link
    The aim of this work is to try to bridge over theoretical immunology and disordered statistical mechanics. Our long term hope is to contribute to the development of a quantitative theoretical immunology from which practical applications may stem. In order to make theoretical immunology appealing to the statistical physicist audience we are going to work out a research article which, from one side, may hopefully act as a benchmark for future improvements and developments, from the other side, it is written in a very pedagogical way both from a theoretical physics viewpoint as well as from the theoretical immunology one. Furthermore, we have chosen to test our model describing a wide range of features of the adaptive immune response in only a paper: this has been necessary in order to emphasize the benefit available when using disordered statistical mechanics as a tool for the investigation. However, as a consequence, each section is not at all exhaustive and would deserve deep investigation: for the sake of completeness, we restricted details in the analysis of each feature with the aim of introducing a self-consistent model.Comment: 22 pages, 14 figur

    Use of camera trapping in determining Iberian lynx population parameters: The use area and its limitations

    Get PDF
    Below are the results of the survey of the Iberian lynx obtained with camera-trapping between 2000 and 2007 in Sierra Morena. Two very important aspects of camera-trapping concerning its efficiency are also analyzed. The first is the evolution along years according to the camera-trapping type used of two efficiency indicators. The results obtained demonstrate that the most efficient lure is rabbit, though it is the less proven (92 trap-nights), followed by camera-trapping in the most frequent marking places (latrines). And, we propose as a novel the concept of use area as a spatial reference unit for the camera-trapping monitoring of non radio-marked animals is proposed, and its validity discussed

    Arginine transport is impaired in C57Bl/6 mouse macrophages as a result of a deletion in the promoter of slc7a2 (CAT2) and Leishmania infection is reduced

    Full text link
    Host genetic factors play a crucial role in immune response. To determine whether the differences betweenC57Bl/6 and BALB-C mice are due only to the production of cytokines by T-helper 1 cells or T-helper 2 cells,we obtained bone marrow–derived macrophages from both strains and incubated them with these cytokines.Although the induction of Nos2 and Arg1 was similar in the 2 strains, infectivity to Leishmania major differed,as did macrophage uptake of arginine, which was higher in BALB-C macrophages. The levels of interferon γ–and interleukin 4–dependent induction of the cationic amino acid transporter SLC7A2 (also known as “cationicamino acid transporter 2,” or “CAT2”) were decreased in macrophages from C57Bl/6 mice. This reductionwas a result of a deletion in the promoter of one of the 4 AGGG repeats. These results demonstrate that theavailability of arginine controls critical aspects of macrophage activation and reveal a factor for susceptibility to Leishmania infection

    Modeling viral coevolution: HIV multi-clonal persistence and competition dynamics

    Get PDF
    The coexistence of different viral strains (quasispecies) within the same host are nowadays observed for a growing number of viruses, most notably HIV, Marburg and Ebola, but the conditions for the formation and survival of new strains have not yet been understood. We present a model of HIV quasispecies competition, that describes the conditions of viral quasispecies coexistence under different immune system conditions. Our model incorporates both T and B cells responses, and we show that the role of B cells is important and additive to that of T cells. Simulations of coinfection (simultaneous infection) and superinfection (delayed secondary infection) scenarios in the early stages (days) and in the late stages of the infection (years) are in agreement with emerging molecular biology findings. The immune response induces a competition among similar phenotypes, leading to differentiation (quasi-speciation), escape dynamics and complex oscillations of viral strain abundance. We found that the quasispecies dynamics after superinfection or coinfection has time scales of several months and becomes even slower when the immune system response is weak. Our model represents a general framework to study the speed and distribution of HIV quasispecies during disease progression, vaccination and therapy.Comment: 20 pages, 10 figure

    Timely HAART initiation may pave the way for a better viral control

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When to initiate antiretroviral therapy in HIV infected patients is a diffcult clinical decision. Actually, it is still a matter of discussion whether early highly active antiretroviral therapy (HAART) during primary HIV infection may influence the dynamics of the viral rebound, in case of therapy interruption, and overall the main disease course.</p> <p>Methods</p> <p>In this article we use a computational model and clinical data to identify the role of HAART timing on the residual capability to control HIV rebound after treatment suspension. Analyses of clinical data from three groups of patients initiating HAART respectively before seroconversion (very early), during the acute phase (early) and in the chronic phase (late), evidence differences arising from the very early events of the viral infection.</p> <p>Results</p> <p>The computational model allows a fine grain assessment of the impact of HAART timing on the disease outcome, from acute to chronic HIV-1 infection. Both patients' data and computer simulations reveal that HAART timing may indeed affect the HIV control capability after treatment discontinuation. In particular, we find a median time to viral rebound that is significantly longer in very early than in late patients.</p> <p>Conclusions</p> <p>A timing threshold is identified, corresponding to approximately three weeks post-infection, after which the capability to control HIV replication is lost. Conversely, HAART initiation occurring within three weeks from the infection could allow to preserve a significant control capability. This time could be related to the global triggering of uncontrolled immune activation, affecting residual immune competence preservation and HIV reservoir establishment.</p

    Optimality of mutation and selection in germinal centers

    Get PDF
    The population dynamics theory of B cells in a typical germinal center could play an important role in revealing how affinity maturation is achieved. However, the existing models encountered some conflicts with experiments. To resolve these conflicts, we present a coarse-grained model to calculate the B cell population development in affinity maturation, which allows a comprehensive analysis of its parameter space to look for optimal values of mutation rate, selection strength, and initial antibody-antigen binding level that maximize the affinity improvement. With these optimized parameters, the model is compatible with the experimental observations such as the ~100-fold affinity improvements, the number of mutations, the hypermutation rate, and the "all or none" phenomenon. Moreover, we study the reasons behind the optimal parameters. The optimal mutation rate, in agreement with the hypermutation rate in vivo, results from a tradeoff between accumulating enough beneficial mutations and avoiding too many deleterious or lethal mutations. The optimal selection strength evolves as a balance between the need for affinity improvement and the requirement to pass the population bottleneck. These findings point to the conclusion that germinal centers have been optimized by evolution to generate strong affinity antibodies effectively and rapidly. In addition, we study the enhancement of affinity improvement due to B cell migration between germinal centers. These results could enhance our understandings to the functions of germinal centers.Comment: 5 figures in main text, and 4 figures in Supplementary Informatio
    • …
    corecore