258 research outputs found

    Identification of Ion Transport Compartments in Turtle Urinary Bladder

    Get PDF
    To identify the turtle urinary bladder cells involved in Na and Cl absorption and Hand HCO3 secretion cellular electrolyte concentrations and uptake of Br and Solutrast were determined using electron microprobe analysis. Whereas inhibition of transepithelial Na transport by ouabain (reversion of short circuit current) led to a pronounced K-Na exchange in granular, and most of the basal cells, surface CA-cells and some basal cells were ouabain insensitive. Surface CA-cells could be divided into a large Cl-rich and a small Cl-poor population. Since the ouabain-induced K-Na exchange could be completely prevented by blocking passive luminal Na entry by amiloride, granular and most of the basal cells seem to form a syncytial Na transport compartment. Luminal uptake of Br only occurred in Cl-poor surface CA-cells, indicating the sole responsibility of these cells for electrogenic and electroneutral Cl absorption and HCO3 secretion. Serosal Br was taken up into all cell types. Whereas H secretion and serosal Br uptake into all cell types could be inhibited by 4-isothiocyano-4\u27-acetamido-2,2\u27-disulfonic stilbene (SITS), blockade of H secretion by lowering luminal pH to 4.5 diminished Br uptake only in Cl-rich surface CA-cells. Theses results indicate: a) Only Cl-rich surface CA-cells have a serosal anion exchanger involved in H secretion and b) granular and basal cells also possess a serosal anion exchanger, possibly responsible for cellular pH regulation. Luminal endocytosis of the I-containing Solutrast was observed in apical regions of Cl-rich surface CA-cells after inhibition of H secretion, but not under steady-state conditions, indicating a transport related but not a constitutive endo-exocytosis

    Garvey-Kelson Relations for Nuclear Charge Radii

    Get PDF
    The Garvey-Kelson relations (GKRs) are algebraic expressions originally developed to predict nuclear masses. In this letter we show that the GKRs provide a fruitful framework for the prediction of other physical observables that also display a slowly-varying dynamics. Based on this concept, we extend the GKRs to the study of nuclear charge radii. The GKRs are tested on 455 out of the approximately 800 nuclei whose charge radius is experimentally known. We find a rms deviation between the GK predictions and the experimental values of only 0.01 fm. This should be contrasted against some of the most successful microscopic models that yield rms deviations almost three times as large. Predictions - with reliable uncertainties - are provided for 116 nuclei whose charge radius is presently unknown.Comment: 4 pages and 3 figure

    Saturation properties and incompressibility of nuclear matter: A consistent determination from nuclear masses

    Get PDF
    Starting with a two-body effective nucleon-nucleon interaction, it is shown that the infinite nuclear matter model of atomic nuclei is more appropriate than the conventional Bethe-Weizsacker like mass formulae to extract saturation properties of nuclear matter from nuclear masses. In particular, the saturation density thus obtained agrees with that of electron scattering data and the Hartree-Fock calculations. For the first time using nuclear mass formula, the radius constant r0r_0=1.138 fm and binding energy per nucleon ava_v = -16.11 MeV, corresponding to the infinite nuclear matter, are consistently obtained from the same source. An important offshoot of this study is the determination of nuclear matter incompressibility KK_{\infty} to be 288±\pm 28 MeV using the same source of nuclear masses as input.Comment: 14 latex pages, five figures available on request ( to appear in Phy. Rev. C

    Studies of neutron-rich nuclei using the CPT mass spectrometer at CARIBU

    Get PDF
    The nucleosynthetic path of the astrophysical r-process and the resulting elemental abundances depend on neutron-separation energies which can be determined from the masses of the nuclei along the r-process reaction path. Due to the current lack of experimental data, mass models are often used. The mass values provided by the mass models are often too imprecise or disagree with each other. Therefore, direct high-precision mass measurements of neutron-rich nuclei are necessary to provide input parameters to the calculations and help refine the mass models. The Californium Rare Isotope Breeder Upgrade (CARIBU) facility of Argonne National Laboratory will provide experiments with beams of short-lived neutron-rich nuclei. The Canadian Penning Trap (CPT) mass spectrometer has been relocated to the CARIBU low-energy beam line to extend measurements of the neutron-rich nuclei into the mostly unexplored region along the r-process path. This will allow precise mass measurements (∼ 10 keV/c2) of more than a hundred very neutron-rich isotopes that have not previously been measured

    Experimental Multi-state Quantum Discrimination in the Frequency Domain with Quantum Dot Light

    Full text link
    The quest for the realization of effective quantum state discrimination strategies is of great interest for quantum information technology, as well as for fundamental studies. Therefore, it is crucial to develop new and more efficient methods to implement discrimination protocols for quantum states. Among the others, single photon implementations are more advisable, because of their inherent security advantage in quantum communication scenarios. In this work, we present the experimental realization of a protocol employing a time-multiplexing strategy to optimally discriminate among eight non-orthogonal states, encoded in the four-dimensional Hilbert space spanning both the polarization degree of freedom and photon energy. The experiment, built on a custom-designed bulk optics analyser setup and single photons generated by a nearly deterministic solid-state source, represents a benchmarking example of minimum error discrimination with actual quantum states, requiring only linear optics and two photodetectors to be realized. Our work paves the way for more complex applications and delivers a novel approach towards high-dimensional quantum encoding and decoding operations

    Signatures of the Optical Stark Effect on Entangled Photon Pairs from Resonantly-Pumped Quantum Dots

    Full text link
    Two-photon resonant excitation of the biexciton-exciton cascade in a quantum dot generates highly polarization-entangled photon pairs in a near-deterministic way. However, there are still open questions on the ultimate level of achievable entanglement. Here, we observe the impact of the laser-induced AC-Stark effect on the spectral emission features and on entanglement. A shorter emission time, longer laser pulse duration, and higher pump power all result in lower values of concurrence. Nonetheless, additional contributions are still required to fully account for the observed below-unity concurrence.Comment: 7 pages, 3 figure

    Post-fabrication tuning of circular Bragg resonators for enhanced emitter-cavity coupling

    Full text link
    Solid-state quantum emitters embedded in circular Bragg resonators are attractive due to their ability to emit quantum states of light with high brightness and low multi-photon probability. As for any emitter-microcavity system, fabrication imperfections limit the spatial and spectral overlap of the emitter with the cavity mode, thus limiting their coupling strength. Here, we show that an initial spectral mismatch can be corrected after device fabrication by repeated wet chemical etching steps. We demonstrate ~16 nm wavelength tuning for optical modes in AlGaAs resonators on oxide, leading to a 4-fold Purcell enhancement of the emission of single embedded GaAs quantum dots. Numerical calculations reproduce the observations and suggest that the achievable performance of the resonator is only marginally affected in the explored tuning range. We expect the method to be applicable also to circular Bragg resonators based on other material platforms, thus increasing the device yield of cavity-enhanced solid-state quantum emitters

    β-delayed neutron spectroscopy using trapped radioactive ions

    Get PDF
    A novel technique for β-delayed neutron spectroscopy has been demonstrated using trapped ions. The neutron-energy spectrum is reconstructed by measuring the time of flight of the nuclear recoil following neutron emission, thereby avoiding all the challenges associated with neutron detection, such as backgrounds from scattered neutrons and γ rays and complicated detector-response functions. I+137 ions delivered from a Cf252 source were confined in a linear Paul trap surrounded by radiation detectors, and the β-delayed neutron-energy spectrum and branching ratio were determined by detecting the β- and recoil ions in coincidence. Systematic effects were explored by determining the branching ratio three ways. Improvements to achieve higher detection efficiency, better energy resolution, and a lower neutron-energy threshold are proposed. © 2013 American Physical Society

    A Dirac-Hartree-Bogoliubov approximation for finite nuclei

    Get PDF
    We develop a complete Dirac-Hartree-Fock-Bogoliubov approximation to the ground state wave function and energy of finite nuclei. We apply it to spin-zero proton-proton and neutron-neutron pairing within the Dirac-Hartree-Bogoliubov approximation (we neglect the Fock term), using a zero-range approximation to the relativistic pairing tensor. We study the effects of the pairing on the properties of the even-even nuclei of the isotopic chains of Ca, Ni and Sn (spherical) and Kr and Sr (deformed), as well as the NN=28 isotonic chain, and compare our results with experimental data and with other recent calculations.Comment: 43 pages, RevTex, 13 figure
    corecore