830 research outputs found

    Experimental investigation of fuel-cooled combustor: Cooling efficiency and coke formation

    Get PDF
    Scramjet is an air-breathing engine designed to propel advanced aircrafts in the atmosphere, suitable, according to various studies, to thrust high-speed hypersonic flights (over Mach 5). The thermal protection of vehicles flying at hypersonic velocities is a critical problem; as at supersonic speeds the incoming air is at too high temperature to be used as a coolant, the fuel becomes the only adequate source of cooling for the vehicle. Regenerative cooling is a well-known cooling technique using the fuel as coolant. As the development of regeneratively cooled engines faces many difficulties, an empirical study of this cooling technology and of its complex dynamics is of high interest. In this context, a remotely controlled fuel-cooled combustor, suitable for the experimental analysis of the pyrolysis-combustion coupling characterizing a fuel-cooled combustion chamber when a hydrocarbon propellant is used, has been designed. Tests are realized under both stationary and transient conditions using ethylene as fuel and air as oxidizer. Two operating parameters, i.e. fuel mass flow rate (between 0.010 and 0.040 g.s-1) and equivalence ratio (between 1.0 and 1.5), have been investigated. It has been observed that fuel mass flow rate increases always result in the raise of the heat flux density passing from the combustion gases to the combustor walls. It has been seen that mass flow rate raises between 16 and 20 % lead to increases in the thermal energy evacuated by the fuel-coolant in the range from 30.4 to 48.5 %, depending on equivalence ratio and pressure. The dependence of the cooling system heat exchange efficiency on the two operating parameters has been demonstrated. The consequences of the coking activity of the fuel have also been investigated. For applied interest, a monitoring method for carbon deposits formation has been developed and validated

    A new 1.6-micron map of Titan’s surface

    Get PDF
    We present a new map of Titan's surface obtained in the spectral 'window' at ∌1.6 ÎŒm between strong methane absorption. This pre-Cassini view of Titan's surface was created from images obtained using adaptive optics on the W.M. Keck II telescope and is the highest resolution map yet made of Titan's surface. Numerous surface features down to the limits of the spatial resolution (∌200–300 km) are apparent. No features are easily identifiable in terms of their geologic origin, although several are likely craters

    The Role of Oxidation Compounds in Biofilm Growth on Polyethylene Geomembrane Barriers Used in Landfill

    Get PDF
    In a model study, polyethylene was preoxidized and incubated for a period of 7 months at 40°C in two different municipal solid waste leachates. During the postexperimental analyses, specific attention was paid to the carbonyl species and carboxylic acid depletion during the environmental exposure because it is well known that carboxylic acids are believed to be a potential substrate for the development of microorganisms. The results showed that the carbonyl as well as the carboxylic acid depletion observed follows first-order kinetics. The biofilm formation was characterized using a suite of analytical techniques, and its formation was compared with the carboxylic acid and carbonyl depletion profil

    Metaproteomics of anaerobic microbial communities degrading long-chain fatty acids

    Get PDF
    The anaerobic conversion of long-chain fatty acids (LCFA), and specifically the difference between the degradation of unsaturated- and saturated-LCFA, is not fully understood. In this work, syntrophic degradation of stearate (C18:0) and oleate (C18:1) was studied. A comparative metaproteomics approach, in which proteins were analyzed by LC-MS/MS, was combined with 16S rRNA gene pyrosequencing. Saturated- and unsaturated-LCFA were converted to methane by the anaerobic consortia. 16S rRNA gene pyrosequencing revealed differences in the microbial composition of sludges incubated with stearate and oleate, separately. Abundance of microorganisms within Deltaproteobacteria and within Synergistia taxa was higher in stearate and oleate incubations, respectively. Methanosaeta was the most abundant methanogen in both conditions. Metaproteomics results were similar and comparable distributions of COG functional categories were found for both samples. Archaeal proteomes were much better identified than bacterial ones, with five times more proteins retrieved. Most of the proteins identified belong to Methanosaeta concilli and Syntrophobacter fumaroxidans, two organisms that have their genome sequenced. Syntrophobacter belongs to Deltaproteobacteria, however this group was not dominant in oleate incubation as determined by pyrosequencing results. Studying metaproteomes of complex microbial communities is still a big challenge especially because most of the genomes are not sequenced which hinders protein identification

    Total Syntheses of Amphidinolide H and G

    Get PDF
    Eureka! The first conquest of the exceptionally potent cytotoxic agent amphidinolide H, which exhibits activity in the picomolar range against human epidermoid cancer cells, was long overdue. The successful route critically hinges upon the scrupulous optimization of the fragment-coupling events (see picture; RCM=ring-closing metathesis) and on the careful adjustment of the peripheral protecting-group pattern

    Total Syntheses of Amphidinolides B1, B4, G1, H1 and Structure Revision of Amphidinolide H2

    No full text
    Nature is a pretty unselective “chemist” when it comes to making the highly cytotoxic amphidinolide macrolides of the B/G/H series. To date, 16 different such compounds have been isolated, all of which could now be approached by a highly convergent and largely catalysis-based route (see figure). This notion is exemplified by the total synthesis of five prototype members of this family. Dinoflagellates of the genus Amphidinium produce a “library” of closely related secondary metabolites of mixed polyketide origin, which are extremely scarce but highly promising owing to the exceptional cytotoxicity against various cancer cell lines. Because of the dense array of sensitive functionalities on their largely conserved macrocyclic frame, however, these amphidinolides of the B, D, G and H types elapsed many previous attempts at their synthesis. Described herein is a robust, convergent and hence general blueprint which allowed not only to conquest five prototype members of these series, but also holds the promise of making “non-natural” analogues available by diverted total synthesis. This notion transpires for a synthesis-driven structure revision of amphidinolide H2. The successful route hinges upon a highly productive Stille–Migita cross-coupling reaction at the congested and chemically labile 1,3-diene site present in all such targets, which required the development of a modified chloride- and fluoride-free protocol. The macrocyclic ring could be formed with high efficiency and selectivity by ring-closing metathesis (RCM) engaging a vinyl epoxide unit as one of the reaction partners. Because of the sensitivity of the targets to oxidizing and reducing conditions as well as to pH changes, the proper adjustment of the protecting group pattern for the peripheral -OH functions also constitutes a critical aspect, which has to converge to silyl groups only once the diene is in place. Tris(dimethylamino)sulfonium difluorotrimethylsilicate (TASF) turned out to be a sufficiently mild fluoride source to allow for the final deprotection without damaging the precious macrolides

    Proteomics of Syntrophomonas zehnderi and Methanobacterium formicicum growing on long-chain fatty acids

    Get PDF
    Background: Conversion of long-chain fatty acids (LCFA) in anaerobic digesters relies on syntrophic relationship between acetogenic bacteria and methanogenic archaea. Conversion of unsaturated- and saturated-LCFA has been previously shown by a coculture of Syntrophomonas zehnderi and Methanobacterium formicium. Degradation of unsaturated-LCFA is rare among Syntrophomonas species; the best studied fatty acid oxidizer, S. wolfei, can only grow on saturated-LCFA. Objectives: Major differences are expected in the pathways and enzymes involved in the degradation of unsaturated-LCFA. In this work we used proteogenomic approach to study these differences. Methods: A draft genome of S. zehnderi was obtained by Illumina HiSeq sequencing. Genomes of S. zehnderi and S. wolfei (available at NCBI) were compared. S. zehnderi and M. formicicum co-cultures grown on oleate (unsaturated LCFA, C18:1) and on stearate (saturated LCFA, C18:0) were further studied using a proteomics approach. Conclusions: Genomic comparison of S. zehnderi and S. wolfei revealed approximately 900 different proteins and 1200 common proteins. In the genome of S. zehnderi, two replicates of the unsaturated acyl-CoA dehydrogenase genes were identified, one of which differs considerably from the acyl-CoA gene found in S. wolfei. Proteomic analysis of S. zehnderi and M. formicium co-cultures revealed high expression levels of proteins related to the -oxidation of LCFA (up to 30% of total proteins identified). Different protein expression levels were observed during the degradation of oleate (44% unique proteins) and stearate (23% unique proteins). In addition, proteins involved in electron transfer were highly expressed, including electron transfer flavoproteins, ATP synthases and a number of hydrogenases and formate dehydrogenases

    Neutrino oscillation physics with a higher Îł\gamma ÎČ\beta-beam

    Full text link
    The precision measurement and discovery potential of a neutrino factory based on a storage ring of boosted radioactive ions (ÎČ\beta-beam) is re-examined. In contrast with past designs, which assume ion Îł\gamma factors of ∌100\sim 100 and baselines of L=130 km, we emphasize the advantages of boosting the ions to higher Îł\gamma and increasing the baseline proportionally. In particular, we consider a medium-Îł\gamma scenario (ÎłâˆŒ500\gamma \sim 500, L=730 km) and a high-Îł\gamma scenario (ÎłâˆŒ2000\gamma \sim 2000, L = 3000 km).The increase in statistics, which grow linearly with the average beam energy, the ability to exploit the energy dependence of the signal and the sizable matter effects at this longer baseline all increase the discovery potential of such a machine very significantly.Comment: An error corrected, conclusions unchanged. Revised version to appear in Nuclear Physics
    • 

    corecore