1,384 research outputs found

    Amplitude response of a unilaterally constrained nonlinear micromechanical resonator

    Get PDF
    Dynamical systems that involve impacts frequently arise in engineering. This Letter reports a study of such a system at microscale that consists of a nonlinear resonator operating with an unilateral impact. The microresonators were fabricated on silicon-on-insulator wafers by using a one-mask process and then characterised by using the capacitively driving and sensing method. Numerical results concerning the dynamics of this vibro-impact system were verified by the experiments. Bifurcation analysis was used to provide a qualitative scenario of the system steady-state solutions as a function of both the amplitude and the frequency of the external driving sinusoidal voltage. The results show that the amplitude of resonant peak is levelled off owing to the impact effect and that the bandwidth of impacting is dependent upon the nonlinearity and the operating conditions

    Decision Making in Networks: A Model of Awareness Raising

    Get PDF
    This work investigates how interpersonal interactions among individuals could affect the dynamics of awareness raising. Even though previous studies on mathematical models of awareness in the decision making context demonstrate how the level of awareness results from self-observation impinged by optimal decision selections and external uncertainties, an explicit accounting of interaction among individuals is missing. Here we introduce for the first time a theoretical mathematical framework to evaluate the effect on individual awareness exerted by the interaction with neighbor agents. This task is performed by embedding the single agent model into a graph and allowing different agents to interact by means of suitable coupling functions. The presence of the network allows, from a global point of view, the emergence of diffusion mechanisms for which the population tends to reach homogeneous attractors, and, among them, the one with the highest level of awareness. The structural and behavioral patterns, such as the initial levels of awareness and the relative importance the individual assigns to their own state with respect to others’, may drive real actors to stress effective actions increasing individual and global awarenes

    A Markov Decision Process with Awareness and Present Bias in Decision-Making

    Get PDF
    We propose a Markov Decision Process Model that blends ideas from Psychological research and Economics to study decision-making in individuals with self-control problems. We have borrowed a dual-process of decision-making with self-awareness from Psychological research, and we introduce present bias in inter-temporal preferences, a phenomenon widely explored in Economics. We allow for both an exogenous and endogenous, state-dependent, present bias in inter-temporal decision-making and explore, by means of numerical simulations, the consequences on well-being emerging from the solution of the model. We show that, over time, self-awareness may mitigate present bias and suboptimal choice behaviour

    On C0 and C1 continuity of envelopes of rotational solids and its application to 5-axis CNC machining

    Get PDF
    We study the smoothness of envelopes generated by motions of rotational rigid bodies in the context of 5-axis Computer Numerically Controlled (CNC) machining. A moving cutting tool, conceptualized as a rotational solid, forms a surface, called envelope, that delimits a part of 3D space where the tool engages the material block. The smoothness of the resulting envelope depends both on the smoothness of the motion and smoothness of the tool. While the motions of the tool are typically required to be at least C2, the tools are frequently only C0 continuous, which results in discontinuous envelopes. In this work, we classify a family of instantaneous motions that, in spite of only C0 continuous shape of the tool, result in C0 continuous envelopes. We show that such motions are flexible enough to follow a free-form surface, preserving tangential contact between the tool and surface along two points, therefore having applications in shape slot milling or in a semi-finishing stage of 5-axis flank machining. We also show that C1 tools and motions still can generate smooth envelopes.Juan de la Cierva - Formation [grant number FJC2019-039804-I] Ram\Ăłn y Cajal fellowship RYC-2017-22649

    MTG: resolution enhancement for MW measurements from geostationary orbits

    Get PDF
    The purpose of this study is to develop and evaluate image processing techniques that improve the spatial resolution of the channels already selected in the preliminary studies for "Geostationary Observatory for Microwave Atmospheric Soundings (GOMAS)". Reference high resolution multifrequency brightness temperatures scenarios have been derived by applying radiative transfer calculation to the spatially and microphysically detailed output of meteorological events simulated by the University of Wisconsin - Non-hydrostatic Model System. Two approaches, Wiener filter and SIR algorithm, have been applied to low frequency channels to enhance the resolution of antenna temperatures, exploiting the oversampling available for GOMAS channels observational strategy. Quite similar improvements have been obtained by applying the two techniques, even if SIR algorithm has provided generally better performances at computation time's expense

    Numerical Verification of an Analytical Model for Phase Noise in MEMS Oscillators.

    Get PDF
    A new analytical formulation for phase noise in MEMS oscillators was recently presented encompassing the role of essential nonlinearities in the electrical and mechanical domains. In this paper, we validate the effectiveness of the proposed analytical formulation with respect to the unified theory developed by Demir et al. describing phase noise in oscillators. In particular, it is shown that, over a range of the second-order mechanical nonlinear stiffness of the MEMS resonator, both models exhibit an excellent match in the phase diffusion coefficient calculation for a square-wave MEMS oscillator.This is the author accepted manuscript. The final version is available from IEEE via http://dx.doi.org/10.1109/TUFFC.2016.257536

    Green fluorescent Protein-based pH indicators for in vivo use: a review

    Get PDF
    Green fluorescent protein (GFP) and its variants have been used as fluorescent reporters in a variety of applications for monitoring dynamic processes in cells and organisms, including gene expression, protein localization, and intracellular dynamics. GFP fluorescence is stable, species-independent, and can be monitored noninvasively in living cells by fluorescence microscopy, flow cytometry, or macroscopic imaging techniques. Owing to the presence of a phenol group on the chromophore, most GFP variants display pH-sensitive absorption and fluorescence bands. Such behavior has been exploited to genetically engineer encodable pH indicators for studies of pH regulation within specific intracellular compartments that cannot be probed using conventional pH-sensitive dyes. These pH indicators contributed to shedding light on a number of cell functions for which intracellular pH is an important modulator. In this review we discuss the photophysical properties that make GFPs so special as pH indicators for in vivo use and we describe the probes that are utilized most by the scientific community.Green fluorescent protein (GFP) and its variants have been used as fluorescent reporters in a variety of applications for monitoring dynamic processes in cells and organisms, including gene expression, protein localization, and intracellular dynamics. GFP fluorescence is stable, species-independent, and can be monitored noninvasively in living cells by fluorescence microscopy, flow cytometry, or macroscopic imaging techniques. Owing to the presence of a phenol group on the chromophore, most GFP variants display pH-sensitive absorption and fluorescence bands. Such behavior has been exploited to genetically engineer encodable pH indicators for studies of pH regulation within specific intracellular compartments that cannot be probed using conventional pH-sensitive dyes. These pH indicators contributed to shedding light on a number of cell functions for which intracellular pH is an important modulator. In this review we discuss the photophysical properties that make GFPs so special as pH indicators for in vivo use and we describe the probes that are utilized most by the scientific community. © 2008 Springer-Verlag

    Geometry and tool motion planning for curvature adapted CNC machining

    Get PDF
    CNC machining is the leading subtractive manufacturing technology. Although it is in use since decades, it is far from fully solved and still a rich source for challenging problems in geometric computing. We demonstrate this at hand of 5-axis machining of freeform surfaces, where the degrees of freedom in selecting and moving the cutting tool allow one to adapt the tool motion optimally to the surface to be produced. We aim at a high-quality surface finish, thereby reducing the need for hard-to-control post-machining processes such as grinding and polishing. Our work is based on a careful geometric analysis of curvature-adapted machining via so-called second order line contact between tool and target surface. On the geometric side, this leads to a new continuous transition between “dual” classical results in surface theory concerning osculating circles of surface curves and oscu- lating cones of tangentially circumscribed developable surfaces. Practically, it serves as an effective basis for tool motion planning. Unlike previous approaches to curvature-adapted machining, we solve locally optimal tool positioning and motion planning within a single optimization framework and achieve curvature adaptation even for convex surfaces. This is possible with a toroidal cutter that contains a negatively curved cutting area. The effectiveness of our approach is verified at hand of digital models, simulations and machined parts, including a comparison to results generated with commercial software

    Whole-Transcriptome Analysis Unveils the Synchronized Activities of Genes for Fructans in Developing Tubers of the Jerusalem Artichoke

    Get PDF
    Helianthus tuberosus L., known as the Jerusalem artichoke, is a hexaploid plant species, adapted to low-nutrient soils, that accumulates high levels of inulin in its tubers. Inulin is a fructose-based polysaccharide used either as dietary fiber or for the production of bioethanol. Key enzymes involved in inulin biosynthesis are well known. However, the gene networks underpinning tuber development and inulin accumulation in H. tuberous remain elusive. To fill this gap, we selected 6,365 expressed sequence tags (ESTs) from an H. tuberosus library to set up a microarray platform and record their expression across three tuber developmental stages, when rhizomes start enlarging (T-0), at maximum tuber elongation rate (T-3), and at tuber physiological maturity (T-m), in "VR" and "K8-HS142"clones. The former was selected as an early tuberizing and the latter as a late-tuberizing clone. We quantified inulin and starch levels, and qRT-PCR confirmed the expression of critical genes accounting for inulin biosynthesis. The microarray analysis revealed that the differences in morphological and physiological traits between tubers of the two clones are genetically determined since T-0 and that is relatively low the number of differentially expressed ESTs across the stages shared between the clones (93). The expression of ESTs for sucrose:sucrose 1-fructosyltransferase (1-SST) and fructan:fructan 1-fructosyltransferase (1-FFT), the two critical genes for fructans polymerization, resulted to be temporarily synchronized and mirror the progress of inulin accumulation and stretching. The expression of ESTs for starch biosynthesis was insignificant throughout the developmental stages of the clones in line with the negligible level of starch into their mature tubers, where inulin was the dominant polysaccharide. Overall, our study disclosed candidate genes underpinning the development and storage of carbohydrates in the tubers of two H. tuberosus clones. A model according to which the steady-state levels of 1-SST and 1-FFT transcripts are developmentally controlled and might represent a limiting factor for inulin accumulation has been provided. Our finding may have significant repercussions for breeding clones with improved levels of inulin for food and chemical industry
    • …
    corecore