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Numerical verification of an analytical model for
phase noise in MEMS oscillators
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Abstract—A new analytical formulation for phase noise in
MEMS oscillators was recently presented encompassing the
role of essential non-linearities in the electrical and mechanical
domains. In this paper we validate the effectiveness of the
proposed analytical formulation with respect to the unified theory
developed by Demir et al. describing phase noise in oscillators.
In particular, it is shown that, over a range of the second
order mechanical nonlinear stiffness of the MEMS resonator,
both models exhibit an excellent match in the phase diffusion
coefficient calculation for a square-wave MEMS oscillator.

Index Terms—Microelectromechanical systems, oscillator,
phase noise, hybrid system, saltation matrix.

I. INTRODUCTION

There has been much recent interest in the analysis of noise
in MEMS oscillators and in particular, towards developing
models providing analytical insight into the role of non-linear
effects on the frequency and phase noise. The availability of
such a model is cardinal since, in general, they enable designer
insight into the underlying physics and provide a starting
basis for more detailed design optimization studies. Thus, it is
worth realizing that either the numerical or the experimental
validation of the effectiveness of a given analytical model
is crucial, together with a proper knowledge of its limits.
Recently, an analytical formulation providing physical insight
into the role of non-linear effects on phase noise in MEMS
oscillators was proposed [1] with model predictions shown
to be qualitatively consistent with experimental findings in
the literature. This paper addresses an independent validation
of this model by comparing the findings with a previously
established approach for phase noise analysis in non-linear
oscillators [2]. It is worth mentioning that the approach devel-
oped in [2] has been extended in [3] in which a more general
theory for the nonlinear perturbative analysis of noise in free
running oscillators affected by white Gaussian noise sources
was presented, able to include the effects of phase noise,
orbital fluctuations and their correlation. Nevertheless, in this
work a direct comparison with [2] is chosen since in their
work Demir et al. proposed a unifying theory to characterize
noise in oscillators which leads to the calculation of c, a single
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scalar quantity representing the variance of the per-cycle jitter
and the spectral spreading in a noisy oscillator [4]. The c
constant can be evaluated from the left v1(t) eigenfuntion
(referred to as PPV in the literature [4]) of the fundamental
matrix of the noiseless oscillator [5]. This eigenfunction is
associated to the unit multiplier of the monodromy matrix and
must be evaluated in one working period. Beside numerical
methods and technicalities involved in the evaluation of c, from
a theoretical point of view the linearisation of the noiseless
oscillator dynamics along its steady state periodic solution
must exist. If this is not the case, the fundamental matrix and
hence v1(t) is not defined. Consequently, oscillators described
by a non smooth vector field (as it happens for analog mixed
signal (AMS) circuits) must be handled with care. Bizzarri et
al. have shown and experimentally verified [6]–[9] that, by
resorting to the saltation matrix linear operator [10], the c
constant can be evaluated also for AMS oscillators, that belong
to the wider class of hybrid dynamical systems. In general,
the saltation matrix can be viewed as a correction factor to be
properly inserted at those points where the fundamental matrix
is not defined. It is worth noticing that such critical points are
those where the noiseless orbit is not differentiable because of
the discontinuity of the vector field.

In this paper, a case study of an electrostatically addressed
MEMS resonator-based square-wave oscillator, in which the
resonator and oscillator circuit nonlinearities are integrated
into a single modeling framework, is investigated. Noise
sources in the oscillator are viewed as an equivalent noise
voltage source representative of a wide-sense stationary pro-
cess such as white noise. After demonstrating that the derived
single-sideband phase noise PSD around the first harmonic
in [1] can be reduced to (41) in [2], the counterpart of the
c constant in such an expression is identified as a function
of the proposed model parameters. Finally, the numerically
computed constant c is compared with the values determined
using the analytically derived expression of Dφ1 and a very
good agreement is demonstrated. The results presented in this
work are based on two first order differential equations with
discontinuous right-hand side. For this reason, a recent exten-
sion [6] of Demir’s approach to hybrid dynamical systems is
considered. Finally, the numerical validation of the analytical
noise model proposed in [1] for the considered case study,
also suggests validity limits of the model itself with respect to
the second order mechanical nonlinear stiffness of the MEMS
resonator.
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II. MODEL DESCRIPTION

An oscillator can be conceptually represented by three
elements placed in a closed-loop: a resonator, a gain element
and an amplitude-limiting mechanism necessary to regulate os-
cillation amplitude.1 The phase noise modeling approach intro-
duced in [1] is devoted to a wide class of oscillators enclosing
an electrostatically driven MEMS resonator as a frequency-
selective element providing a low-loss non-linear second-order
response. In particular, we consider an architecture made up of
an electrostatically driven double-ended-turning fork (DETF)
silicon micro-resonator, a front-end transresistance amplifier,
a bandpass filter and a comparator as illustrated in Fig. 1 [11].

A simplified description of an oscillator belonging to such
a class, driven by random noise excitation (vn in Eq. (1)),
is obtained in terms of a second-order nonlinear stochastic
differential equation as [1], [12]

d2

dt2
v(t) + α

d

dt
v(t)− βsign

(
d

dt
v(t)

)
+ω2

0v(t) + µv3(t)

= −Rf
Lm

ωovn ,

(1)
where

α =
Rm
Lm

, β =
Rf
Lm

πωoVF
4

, µ =
1

R2
fLmCm2

. (2)

Here, Lm, Rm and Cmo are the equivalent motional induc-
tance, resistance and capacitance respectively while Q is the
quality factor of the operating vibration mode and VF is
the output amplitude of the hard limiter at the oscillation
frequency (ωo) which may be expressed as 1/

√
LmCmo. Rf is

the feedback resistance of the transimpedance amplifier while
Cm2 is governed by the cubic nonlinearity of the resonator
and is indirectly proportional to the summation of the second
order nonlinear electrical (k2e) and mechanical (k2m) stiffness
of the resonator [12]. Moreover, sign(y) = 1 if y ≥ 0
and sign(y) = −1 otherwise.2 Considering 25 V and 30 V
Vdc and a set of excitation voltages, system parameters in
Eq. (1) are determined from the measured open-loop response

1This amplitude-limited mechanism may be engineered to provide a gain
roll-off at large amplitudes or may be inherent to the nonlinearities that are
operative in the resonator.

2Note that if one assumes sign(0) = 0, Eq. (1) exhibits a stable equilibrium
point on the manifold dv

dt
= 0 ruling the switching of the vector field.

Figure 1. Schematic description of the MEMS square wave oscillator.

of the resonator. The calculated values of these parameters for
two different Vdc voltages are shown in Table II [1]. Using
these values, for different excitation voltages (VF ) β can be
determined as shown in Table II.

The phase noise model derived in [1] explains the under-
lying phenomenon by which inherent noise in the oscillator
results in perturbations in the phase trajectory. This is achieved
introducing the Dφ1 diffusion coefficient. The rate at which
state point in the phase plane (v, v̇) diffuses turns out to be
directly proportional to Dφ1

which is expressed as

Dφ1
= Dφo

(1 + γ2) (3)

where

Dφo
=

R2
m

L2
mV

2
F

v̄2
n

4
(4)

γ =
3V 2

F

2ωoCm2R3
m

(5)

and v̄2
n is the singled-sided PSD of the equivalent noise voltage

source in Eq. (1).
According to the analysis conducted in [1], assuming that

the actual angular frequency ω of the oscillator can be safely
approximated by ωo, a straightforward relation exists between
Dφ1

and the Demir’s constant c,

c =
DΦ1

ω2
. (6)

This relation can be derived by a direct comparison between
the expressions of the single-sideband phase noise spectrum
around the oscillator fundamental frequency, derived in [1]
(Eq. (81)) and [2] (Eq. (41)).

For each value of Vdc and VF , the diffusion coefficient
(DΦ1

) can be calculated using the analytical expression shown
in (3-5) [1]. The results are shown in Table III

Table I
SUMMARY OF THE CALCULATED PARAMETERS OF THE DETF MEMS

RESONATOR.

Parameter Value at 25 V Vdc Value at 30 V Vdc

Lm (H) 8.4× 103 5.8× 103

Rm (Ω) 8.1× 105 7× 105

Cmo (F) 6× 10−17 8.6× 10−17

Cm2 (FA2) 1.2× 10−27 2.7× 10−27

Table II
CALCULATED VALUES OF β AT DIFFERENT Vdc AND VF VOLTAGES.

VF (mV) β at 25 V Vdc β at 30 V Vdc

16 7.046907072834351 · 103 10.1475461848815 · 103

32 1.406042811951403 · 104 2.02470164921002 · 104

50 2.228427680970662 · 104 3.20893586059775 · 104

100 4.446297773474253 · 104 6.40266879380292 · 104

160 7.046907072834347 · 104 10.1475461848815 · 104
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Table III
ANALYTICALLY CALCULATED VALUE OF DΦ1

AT DIFFERENT Vdc AND VF
VOLTAGES [1]

VF (mV) DΦ1
at 25 V Vdc DΦ1

at 30 V Vdc

16 1.841659481347613 · 10−8 2.62265679278919 · 10−8

32 1.531718125668003 · 10−8 1.39692408865264 · 10−8

50 3.021850186234356 · 10−8 2.22147204131426 · 10−8

100 1.145019624210766 · 10−7 7.93943342206827 · 10−8

160 2.867902739961938 · 10−7 1.98142108244848 · 10−7

III. NUMERICAL SIMULATION

To validate the analytical model summarized in Section II it
is necessary, for several sets of parameters values, (i) to derive
the c values of the dynamical system described by Eq. (1)
directly from Demir’s approach, (ii) compute Dφ1

according
to Eq. (3), (iii) compute c through Eq. (6) and compare these
values with those obtained at point (i). We start by rewriting
Eq. (1) as

ẋ1(t) = x2(t)︸ ︷︷ ︸
f1(x1,x2)

ẋ2(t) = −αx2(t) + βsign (x2(t))− ω2
0x1(t)− µx3

1(t)︸ ︷︷ ︸
f2(x1,x2)

,

(7)
where x1(t) = v(t) and x2(t) = v̇(t) and the vn noise

source is dropped.
Equation (7) represents a hybrid dynamical system [10]

since its vector field exhibits discontinuities (switching) when-
ever the trajectory in the state space reaches the manifold
h(x1, x2) = x2 = 0. For our purposes the main consequence
of this phenomenon is that the variational problem associated
to (7) is not defined at the discontinuity boundary identified
by the aforementioned manifold. For this reason one must
resort to the saltation matrix linear operator [10] in order to
evaluate the correct fundamental matrix solving the variational
problem. This matrix is crucial since it allows (i) to derive
efficiently the steady state periodic solution of Eq. (7) through
a time-domain shooting method, (ii) to study the stability of
this solution through its Floquet multipliers, (iii) to derive the
PPV v1(t) (the key ingredient to obtain c).

As an example, for Vdc = 30 V and VF = 16 mV, the
angular frequency of the steady state periodic solution is
ω = 1.4156 · 106 rads−1 and its numerical computed Floquet
multipliers are λ1 = 1.0000 (this is the theoretical unit
multiplier) and λ2 = 0.9997. Since λ2 stays within the unit
circle in the complex plane, the periodic solution is stable.
Moreover, as it can be easily verify by performing a transient
simulation of system (7), since λ2 is very close to 1 the
considered oscillator exhibits a relaitvely high Q factor.

Once the noiseless periodic state solution is available,
together with the evolution of the system fundamental ma-
trix along one working period T = 2π/ω of the oscillator,
it is now possible to compute the c constant. As a first
step, the left eigenfuntion v1(t) of the fundamental matrix
must be computed. It has been obtained by resorting to the
MATLABTM version of the suite SUNDIALS [13], perform-
ing the backward integration from T to 0 of the adjoint

system corresponding to Eq. (7). As an initial condition for
the backward integration, the eigenvector corresponding to the
unitary eigenvalue of the monodromy matrix has been chosen.

As a second step, the B(x1, x2) (incidence) matrix de-
scribing how noise sources propagate must be provided. In
particular a noisy version of Eq. (7) must be written as

d

dt

[
x1(t)
x2(t)

]
=

[
f1(x1, x2)
f2(x1, x2)

]
+B(x1, x2)η(t) , (8)

where η(t) is a p-dimensional vector of uncorrelated white
noise sources and B(x1, x2) is a 2 × p matrix. In this case,
p = 1 and B(x1, x2) = (0,

√
ζ)T is a constant vector. Hence,

according to [2],

c =
ζ

T

∫
T

vT
1 (t)v1(t)dt . (9)

Moreover, using (2) and (8), we derived an expression that
relate ζ with the parameters of the oscillator as

√
ζ =

Rf
Lm

ωo
v̄2
n

2
, (10)

Note that the variance of the per cycle time c and phase jitter
DΦ1

are related by the expression mentioned in Eq. (6). It is
therefore now possible, for any set of parameters characteriz-
ing Eq. (1), to compare the c value obtained by resorting to
Eq. (9) and the one coming from Eq. (6). A particular set of
results is shown in Fig. 2 for k2m = 1.43 · 1012 Nm3, which
corresponds to a particular value of the second order me-
chanical nonlinear stiffness of the MEMS resonator previously
reported in [12]. These results are obtained for two different
values of Vdc voltage with a subset of VF voltages. This
allows to test both the parameter sets reported in Table II. A
good agreement can be observed thus validating the analytical
phase noise model under these conditions. As predicted by
the analytical model in [12], an optimal operating point for
the oscillator (particular value of VF ) exists where the phase
noise of the oscillator is minimized.

A second set of results are obtained for Vdc = 30 V and
scaling the k2m value previously adopted by a factor κ. A good
agreement between the analytical and numerical predictions is
generally seen and the results are consistent with the trends
observed in Fig. 3. It is worth noticing that a particular
value of k2m (κ=0.27) exists such that a best case noise
performance is observed which can further be improved by
increasing the feedback signal VF . This happens when the
second order mechanical and electrical stiffness corrections
cancel each other and lead to an expression of Dφ1

which
is independent of γ. This behavior is consistent with the
previously reported experimental observations of phase noise
optimization in MEMS oscillators [14]. As the value of k2m is
then progressively increased, we note that the optimal operat-
ing point of the oscillator shifts to lower feedback voltages as
predicted by the analytical model. This can be inferred from
Eq. (3- 5). An increase in k2m, increases the contribution of
the resonator cubic nonlinearities to the diffusion coefficient
which can be reduced by lowering the feedback voltage. This
validation provides further weight to the design insight gained
by the analytical formulation, particularly with regard to the
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Figure 2. A comparison between the phase noise calculations proposed in
[2] and [1] is carried out by comparing the c values calculated using the two
approaches.

Figure 3. Here, the second order mechanical nonlinear stiffness of the
resonator is varied by multiplying a known constant value.

role of resonator and amplifier non-linearity in determining
the oscillator phase noise.

IV. CONCLUDING REMARKS

This paper reports the numerical verification of a recently
proposed analytical model for phase noise in a MEMS oscil-
lator embedding a non-linear resonator. The effectiveness of
the proposed analytical formulation is proven with respect to
the unified theory developed by Demir et al. describing phase
noise in oscillators. In particular, it is shown that, over a range
of values for the second order mechanical nonlinear stiffness of
the MEMS resonator, both models exhibit an excellent match
in the phase diffusion coefficient calculation for a square-wave

MEMS oscillator. The numerical model verifies the trends
described by the analytical model with respect to the trends
in phase noise for values of resonator polarization voltage and
oscillator feedback voltage. It is also seen that for a particular
value of non-linear stiffness parameter k2m, there exists an
optimal operating point in the feedback configuration where
the phase noise of the oscillator is minimized. Furthermore,
by setting the values of the non-linear electrical spring k2e to
equal the non-linear mechanical spring k2m, it is possible to
improve the oscillator noise performance, consistent with in-
dependently reported experimental observations to this effect.
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