624 research outputs found

    On the Shuffle Automaton Size for Words

    Full text link
    We investigate the state size of DFAs accepting the shuffle of two words. We provide words u and v, such that the minimal DFA for u shuffled with v requires an exponential number of states. We also show some conditions for the words u and v which ensure a quadratic upper bound on the state size of u shuffled with v. Moreover, switching only two letters within one of u or v is enough to trigger the change from quadratic to exponential

    P Systems with Minimal Left and Right Insertion and Deletion

    Get PDF
    In this article we investigate the operations of insertion and deletion performed at the ends of a string. We show that using these operations in a P systems framework (which corresponds to using specific variants of graph control), computational completeness can even be achieved with the operations of left and right insertion and deletion of only one symbol

    Quantum mechanical studies of lincosamides

    Get PDF
    Lincosamides are a class of antibiotics used both in clinical and veterinary practice for a wide range of pathogens. This group of drugs inhibits the activity of the bacterial ribosome by binding to the 23S RNA of the large ribosomal subunit and blocking protein synthesis. Currently, three X-ray structures of the ribosome in complex with clindamycin are available in the Protein Data Bank, which reveal that there are two distinct conformations of the pyrrolidinyl propyl group of the bound clindamycin. In this work, we used quantum mechanical methods to investigate the probable conformations of clindamycin in order to explain the two binding modes in the ribosomal 23S RNA. We studied three lincosamide antibiotics: clindamycin, lincomycin, and pirlimycin at the B3LYP level with the 6-31G** basis set. The focus of our work was to connect the conformational landscape and electron densities of the two clindamycin conformers found experimentally with their physicochemical properties. For both functional conformers, we applied natural bond orbital (NBO) analysis and the atoms in molecules (AIM) theory, and calculated the NMR parameters. Based on the results obtained, we were able to show that the structure with the intramolecular hydrogen bond C=O…H–O is the most stable conformer of clindamycin. The charge transfer between the pyrrolidine-derivative ring and the six-atom sugar (methylthiolincosamide), which are linked via an amide bond, was found to be the dominant factor influencing the high stability of this conformer

    Digital Mazes and Spatial Reasoning: Using Colour and Movement to Explore the 4th Dimension

    Get PDF
    This chapter focuses on innovative developments of four-dimensional digital mazes, examining how these mazes tap into the ideas of mathematician and fiction writer Charles Hinton (1853-1907) who wrote extensively on perception of a 4th geometric dimension. Hinton treats mathematical objects as physical and material movements, and draws on non-Euclidean geometry to argue for a virtual dimension to matter. I discuss recent attempts to build digital mazes that develop spatial sense in four dimensions, and show how these are directly linked to Hinton’s ideas. I focus on how colour and movement in digital environments are used to develop a distinctive kind of spatial sense. This chapter sheds light on innovative uses of digital software for developing student spatial sense. My aim is to explicate the new materialism of Charles Hinton, contribute to discussions about the nature of spatial sense and spatial reasoning, and to point to possible directions for future research on inventive approaches to geometry

    An ab initio and AIM investigation into the hydration of 2-thioxanthine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hydration is a universal phenomenon in nature. The interactions between biomolecules and water of hydration play a pivotal role in molecular biology. 2-Thioxanthine (2TX), a thio-modified nucleic acid base, is of significant interest as a DNA inhibitor yet its interactions with hydration water have not been investigated either computationally or experimentally. Here in, we reported an <it>ab initio </it>study of the hydration of 2TX, revealing water can form seven hydrated complexes.</p> <p>Results</p> <p>Hydrogen-bond (H-bond) interactions in 1:1 complexes of 2TX with water are studied at the MP2/6-311G(d, p) and B3LYP/6-311G(d, p) levels. Seven 2TX<sup>...</sup>H<sub>2</sub>O hydrogen bonded complexes have been theoretically identified and reported for the first time. The proton affinities (PAs) of the O, S, and N atoms and deprotonantion enthalpies (DPEs) of different N-H bonds in 2TX are calculated, factors surrounding why the seven complexes have different hydrogen bond energies are discussed. The theoretical infrared and NMR spectra of hydrated 2TX complexes are reported to probe the characteristics of the proposed H-bonds. An improper blue-shifting H-bond with a shortened C-H bond was found in one case. NBO and AIM analysis were carried out to explain the formation of improper blue-shifting H-bonds, and the H-bonding characteristics are discussed.</p> <p>Conclusion</p> <p>2TX can interact with water by five different H-bonding regimes, N-H<sup>...</sup>O, O-H<sup>...</sup>N, O-H<sup>...</sup>O, O-H<sup>...</sup>S and C-H<sup>...</sup>O, all of which are medium strength hydrogen bonds. The most stable H-bond complex has a closed structure with two hydrogen bonds (N(7)-H<sup>...</sup>O and O-H<sup>...</sup>O), whereas the least stable one has an open structure with one H-bond. The interaction energies of the studied complexes are correlated to the PA and DPE involved in H-bond formation. After formation of H-bonds, the calculated IR and NMR spectra of the 2TX-water complexes change greatly, which serves to identify the hydration of 2TX.</p

    Bilevel Parameter Learning for Higher-Order Total Variation Regularisation Models.

    Get PDF
    We consider a bilevel optimisation approach for parameter learning in higher-order total variation image reconstruction models. Apart from the least squares cost functional, naturally used in bilevel learning, we propose and analyse an alternative cost based on a Huber-regularised TV seminorm. Differentiability properties of the solution operator are verified and a first-order optimality system is derived. Based on the adjoint information, a combined quasi-Newton/semismooth Newton algorithm is proposed for the numerical solution of the bilevel problems. Numerical experiments are carried out to show the suitability of our approach and the improved performance of the new cost functional. Thanks to the bilevel optimisation framework, also a detailed comparison between TGV 2 and ICTV is carried out, showing the advantages and shortcomings of both regularisers, depending on the structure of the processed images and their noise level.King Abdullah University of Science and Technology (KAUST) (Grant ID: KUKI1-007-43), Engineering and Physical Sciences Research Council (Grant IDs: Nr. EP/J009539/1 “Sparse & Higher-order Image Restoration” and Nr. EP/M00483X/1 “Efficient computational tools for inverse imaging problems”), Escuela Politécnica Nacional de Quito (Grant ID: PIS 12-14, MATHAmSud project SOCDE “Sparse Optimal Control of Differential Equations”), Leverhulme Trust (project on “Breaking the non-convexity barrier”), SENESCYT (Ecuadorian Ministry of Higher Education, Science, Technology and Innovation) (Prometeo Fellowship)This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s10851-016-0662-

    Fabrication of Pt/Ru Nanoparticle Pair Arrays with Controlled Separation and their Electrocatalytic Properties

    Get PDF
    Aiming at the investigation of spillover and transport effects in electrocatalytic reactions on bimetallic catalyst electrodes, we have prepared novel, nanostructured electrodes consisting of arrays of homogeneously distributed pairs of Pt and Ru nanodisks of uniform size and with controlled separation on planar glassy carbon substrates. The nanodisk arrays (disk diameter approximate to 60 nm) were fabricated by hole-mask colloidal lithography; the separation between pairs of Pt and Ru disks was varied from -25 nm (overlapping) via +25 nm to +50 nm. Morphology and (surface) composition of the Pt/Ru nanodisk arrays Were characterized by scanning electron microscopy, energy dispersive X-ray analysis, and X-ray Photoelectron spectroscopy, the electrochemical/electrocatalytic properties were explored by cyclic voltammetry, COad monolayer oxidation ("COad stripping"), and potentiodynamic hydrogen oxidation. Detailed analysis of the 2 COad oxidation peaks revealed that on all bimetallic pairs these cannot be reproduced by superposition of the peaks obtained on electrodes with Pt/Pt or Ru/Ru pairs, pointing to effective Pt-Ru interactions even between rather distant pairs (50 nm). Possible reasons for this observation and its relevance for the understanding of previous reports of highly active catalysts with separate Pt and Ru nanoparticles are discussed. The results clearly demonstrate that this preparation method is perfectly suited for fabrication of planar model electrodes with well-defined arrays of bimetallic nanodisk pairs, which opens up new possibilities for model studies of electrochemical/electrocatalytic reactions

    Identifying quantitative operation principles in metabolic pathways: a systematic method for searching feasible enzyme activity patterns leading to cellular adaptive responses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Optimization methods allow designing changes in a system so that specific goals are attained. These techniques are fundamental for metabolic engineering. However, they are not directly applicable for investigating the evolution of metabolic adaptation to environmental changes. Although biological systems have evolved by natural selection and result in well-adapted systems, we can hardly expect that actual metabolic processes are at the theoretical optimum that could result from an optimization analysis. More likely, natural systems are to be found in a feasible region compatible with global physiological requirements.</p> <p>Results</p> <p>We first present a new method for globally optimizing nonlinear models of metabolic pathways that are based on the Generalized Mass Action (GMA) representation. The optimization task is posed as a nonconvex nonlinear programming (NLP) problem that is solved by an outer-approximation algorithm. This method relies on solving iteratively reduced NLP slave subproblems and mixed-integer linear programming (MILP) master problems that provide valid upper and lower bounds, respectively, on the global solution to the original NLP. The capabilities of this method are illustrated through its application to the anaerobic fermentation pathway in <it>Saccharomyces cerevisiae</it>. We next introduce a method to identify the feasibility parametric regions that allow a system to meet a set of physiological constraints that can be represented in mathematical terms through algebraic equations. This technique is based on applying the outer-approximation based algorithm iteratively over a reduced search space in order to identify regions that contain feasible solutions to the problem and discard others in which no feasible solution exists. As an example, we characterize the feasible enzyme activity changes that are compatible with an appropriate adaptive response of yeast <it>Saccharomyces cerevisiae </it>to heat shock</p> <p>Conclusion</p> <p>Our results show the utility of the suggested approach for investigating the evolution of adaptive responses to environmental changes. The proposed method can be used in other important applications such as the evaluation of parameter changes that are compatible with health and disease states.</p
    • …
    corecore