
J Math Imaging Vis
DOI 10.1007/s10851-016-0662-8

Bilevel Parameter Learning for Higher-Order Total Variation
Regularisation Models

J. C. De los Reyes1 · C.-B. Schönlieb2 · T. Valkonen3

Received: 25 August 2015 / Accepted: 1 May 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We consider a bilevel optimisation approach for
parameter learning in higher-order total variation image
reconstruction models. Apart from the least squares cost
functional, naturally used in bilevel learning, we propose
and analyse an alternative cost based on a Huber-regularised
TV seminorm. Differentiability properties of the solution
operator are verified and a first-order optimality system is
derived. Based on the adjoint information, a combined quasi-
Newton/semismooth Newton algorithm is proposed for the
numerical solution of the bilevel problems. Numerical exper-
iments are carried out to show the suitability of our approach
and the improved performance of the new cost functional.
Thanks to the bilevel optimisation framework, also a detailed
comparison between TGV2 and ICTV is carried out, show-
ing the advantages and shortcomings of both regularisers,
depending on the structure of the processed images and their
noise level.

Keywords Bilevel optimisation · Total variation regularis-
ers · Image quality measures

1 Introduction

In this paper, we propose a bilevel optimisation approach
for parameter learning in higher-order total variation regu-
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larisation models for image restoration. The reconstruction
of an image from imperfect measurements is essential for
all research which relies on the analysis and interpreta-
tion of image content. Mathematical image reconstruction
approaches aim to maximise the information gain from
acquired image data by intelligent modelling and mathemat-
ical analysis.

A variational image reconstruction model can be for-
malised as follows: Given data f which is related to an image
(or to certain image information, e.g. a segmented or edge
detected image) u through a generic forward operator (or
function) K , the task is to retrieve u from f . In most realistic
situations, this retrieval is complicated by the ill-posedness
of K aswell as randomnoise in f . Awidely acceptedmethod
that approximates this ill-posed problem by a well-posed one
and counteracts the noise is the method of Tikhonov reg-
ularisation. That is, an approximation to the true image is
computed as a minimiser of

α R(u) + d(K (u), f ), (1.1)

where R is a regularising energy that models a-priori knowl-
edge about the image u, d(·, ·) is a suitable distance function
that models the relation of the data f to the unknown u, and
α > 0 is a parameter that balances our trust in the forward
model against the need of regularisation. The parameter α,
in particular, depends on the amount of ill-posedness in the
operator K and the amount (amplitude) of the noise present
in f . A key issue in imaging inverse problems is the cor-
rect choice of α, image priors (regularisation functionals R),
fidelity terms d and (if applicable) the choice of what to mea-
sure (the linear or non-linear operator K ). Depending on this
choice, different reconstruction results are obtained.

While functional modelling (1.1) constitutes a math-
ematically rigorous and physical way of setting up the
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reconstruction of an image—providing reconstruction guar-
antees in terms of error and stability estimates—it is limited
with respect to its adaptivity for real data. On the other hand,
data-based modelling of reconstruction approaches is set up
to produce results which are optimal with respect to the given
data. However, in general, it neither offers insights into the
structural properties of the model nor provides comprehen-
sible reconstruction guarantees. Indeed, we believe that for
the development of reliable, comprehensible and at the same
time effective models (1.1), it is essential to aim for a uni-
fied approach that seeks tailor-made regularisation and data
models by combining model- and data-based approaches.

To do so, we focus on a bilevel optimisation strategy for
finding an optimal setup of variational regularisation models
(1.1). That is, for a given training pair of noisy and original
clean images ( f, f0), respectively, we consider a learning
problem of the form

min
α

F(u∗) = cost (u∗, f0) subject to

u∗ ∈ argmin
u

{α R(u) + d(K (u), f )} , (1.2)

where F is a generic cost functional that measures the fit-
ness of u∗ to the training image f0. The argument of the
minimisation problem will depend on the specific setup (i.e.
the degrees of freedom) in the constraint problem (1.1). In
particular, we propose a bilevel optimisation approach for
learning optimal parameters in higher-order total variation
regularisation models for image reconstruction in which the
arguments of the optimisation constitute parameters in front
of the first- and higher-order regularisation terms.

Rather than working on the discrete problem, as is
done in standard parameter learning and model optimisation
methods, we optimise the regularisation models in infinite-
dimensional function space. The resulting problems are
difficult to treat due to the non-smooth structure of the lower
level problem, which makes it impossible to verify standard
constraint qualification conditions for Karush–Kuhn–Tucker
(KKT) systems. Therefore, in order to obtain characteris-
ing first-order necessary optimality conditions, alternative
analytical approaches have emerged, in particular regulari-
sation techniques [4,20,28]. We consider such an approach
here and study the related regularised problem in depth.
In particular, we prove the Fréchet differentiability of the
regularised solution operator,which enables to obtain anopti-
mality condition for the problem under consideration and an
adjoint state for the efficient numerical solution of the prob-
lem. The bilevel problems under consideration are related to
the emerging field of generalised mathematical programmes
with equilibrium constraints (MPEC) in function space. Let
us remark that even for finite-dimensional problems, there
are few recent references dealing with stationarity conditions

and solution algorithms for this type of problems (see, e.g.
[18,30,33,34,38]).

Let us give an account to the state of the art of bilevel
optimisation for model learning. In machine learning, bilevel
optimisation iswell established. It is a semi-supervised learn-
ing method that optimally adapts itself to a given dataset
of measurements and desirable solutions. In [15,23,43],
for instance, the authors consider bilevel optimisation for
finite-dimensional Markov random field models. In inverse
problems, the optimal inversion and experimental acquisition
setup is discussed in the context of optimal model design
in works by Haber, Horesh and Tenorio [25,26], as well
as Ghattas et al. [3,9]. Recently, parameter learning in the
context of functional variational regularisation models (1.1)
also entered the image processing community with works by
the authors [10,22], Kunisch, Pock and co-workers [14,33],
Chung et al. [16] and Hintermüller et al. [30].

Apart from thework of the authors [10,22], all approaches
so far are formulated and optimised in the discrete setting.
Our subsequent modelling, analysis and optimisation will be
carried out in function space rather than on a discretisation
of (1.1). While digitally acquired image data are of course
discrete, the aim of high-resolution image reconstruction and
processing is always to compute an image that is close to the
real (analogue, infinite dimensional) world. Hence, it makes
sense to seek images which have certain properties in an
infinite dimensional function space. That is, we aim for a
processing method that accentuates and preserves qualita-
tive properties in images independent of the resolution of the
image itself [45].Moreover, optimisationmethods conceived
in function space potentially result in numerical iterative
schemes which are resolution and mesh independent upon
discretisation [29].

Higher-order total variation regularisation has been intro-
duced as an extension of the standard total variation regu-
lariser in image processing. As the Total Variation (TV) [41]
and many more contributions in the image processing com-
munity have proven, a non-smooth first-order regularisation
procedure results in a non-linear smoothing of the image,
smoothing more in homogeneous areas of the image domain
and preserving characteristic structures such as edges. In
particular, the TV regulariser is tuned towards the preser-
vation of edges and performs very well if the reconstructed
image is piecewise constant. The drawback of such a reg-
ularisation procedure becomes apparent as soon as images
or signals (in 1D) are considered which do not only consist
of constant regions and jumps but also possess more com-
plicated, higher-order structures, e.g. piecewise linear parts.
The artefact introduced by TV regularisation in this case is
called staircasing [40]. One possibility to counteract such
artefacts is the introduction of higher-order derivatives in the
image regularisation.Chambolle andLions [11], for instance,
propose a higher-order method by means of an infimal con-
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Fig. 1 Effect of β on TGV2

denoising with optimal α

(a) Too low β / High oscil-
lation

(b) Optimal β (c) Too high β / almost TV

volution of the TV and the TV of the image gradient called
Infimal Convolution Total Variation (ICTV) model. Other
approaches to combine first- and second-order regularisation
originate, for instance, from Chan et al. [12] who consider
total variation minimisation together with weighted versions
of the Laplacian, the Euler-elastica functional [13,37], which
combines total variation regularisation with curvature penal-
isation, and many more [35,39] just to name a few. Recently,
Bredies et al. have proposed Total Generalized Variation
(TGV) [5] as a higher-order variant of TV regularisation.

In this work, we mainly concentrate on two second-order
total variation models: the recently proposed TGV [5] and
the ICTV model of Chambolle and Lions [11]. We focus
on second-order TV regularisation only since this is the one
which seems to be most relevant in imaging applications [6,
31]. For � ⊂ R

2 open and bounded and u ∈ BV (�), the
ICTV regulariser reads

ICTVα,β(u) := min
v∈W 1,1(�), ∇v∈BV (�)

α‖Du − ∇v‖M(�;R2)

+β‖D∇v‖M(�;R2×2). (1.3)

On the other hand, second-order TGV [7,8] for u ∈ BV (�)

reads

TGV2
α,β(u) := min

w∈BD(�)
α‖Du − w‖M(�;R2)

+β‖Ew‖M(�;Sym2(R2)). (1.4)

Here

‖Du‖M(�;R2) = sup
g∈C∞

0 (�;R2),‖g‖∞≤1

∫
�

u ∇ · g dx (1.5)

stands for the total variation of u in �, BD(�) := {w ∈
L1(�;Rn) | ‖Ew‖M(�;Rn×n) < ∞} is the space of vec-
tor fields of bounded deformation on �, E denotes the
symmetrised gradient and Sym2(R2) denotes the space of
symmetric tensors of order 2with arguments inR2. The para-
meters α, β are fixed positive parameters and will constitute
the arguments in the special learning problem á la (1.2) we

consider in this paper. The main difference between (1.3)
and (1.4) is that we do not generally have that w = ∇v for
any function v. That results in some qualitative differences
of ICTV and TGV regularisation, compare for instance [1].
Substituting αR(u) in (1.1) by TGV2

α,β(u) or ICTVα,β(u)

gives the TGV image reconstruction model and the ICTV
image reconstruction model, respectively. In this paper, we
only consider the case K = I d identity and d(u, f ) =
‖u− f ‖2

L2(�)
in (1.1) which corresponds to an image denois-

ing model for removing Gaussian noise. With our choice of
regulariser, the former scalar α in (1.1) has been replaced
by a vector (α, β) of two parameters in (1.3) and (1.4). The
choice of the entries in this vector now do not only determine
the overall strength of the regularisation (depending on the
properties of K and the noise level), but those parameters
also balance between the different orders of regularity of the
function u, and their choice is indeed crucial for the image
reconstruction result. Large β will give regularised solutions
that are close toTV regularised reconstructions, compare Fig.
1. Large α will result in TV2 type solutions, that is solutions
that are regularised with TV of the gradient [27,39], com-
pare Fig. 2. With our approach described in the next section,
we propose a learning approach for choosing those parame-
ters optimally, in particular optimally for particular types of
images.

For the existence analysis of an optimal solution as well as
for the derivation of an optimality system for the correspond-
ing learning problem (1.2), we will consider a smoothed
version of the constraint problem (1.1)—which is the one in
fact used in the numerics. That is, we replace R(u)—being
TV, TGV or ICTV in this paper—by a Huber-regularised
version and add an H1 regularisation with a small weight to
(1.1). In this setting and under the special assumption of box
constraints on α and β, we provide a simple existence proof
for an optimal solution. A more general existence result that
holds also for the original non-smooth problem and does not
require box constraints is derived in [19], and we refer the
reader to this paper for a more sophisticated analysis on the
structure of solutions.
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Fig. 2 Effect of choosing α too
large in TGV2 denoising

(a) Too low α, low β.
Good match to noisy data

(b) Too low α, optimal β.
optimal TV 2-like behaviour

(c) Too high α, high β.
Bad TV2-like behaviour

Amain challenge in the setup of such a learning approach
is to decide what is the best way to measure fitness (optimal-
ity) of the model. In our setting this amounts to choosing an
appropriate distance F in (1.2) that measures the fitness of
reconstructed images to the ‘perfect’, noise-free images in
an appropriate training set. We have to formalise what we
mean by an optimal reconstruction model. Classically, the
difference between the original, noise-free image f0 and its
regularised version uα,β is computed with an L2

2 cost func-
tional

FL2
2
(uα,β) := ‖uα,β − f0‖2L2(�)

, (1.6)

which is closely related to the PSNR quality measure. Apart
from this, we propose in this paper an alternative cost func-
tional based on a Huberised total variation cost

FL1
η∇(uα,β) :=

∫
�

|D(uα,β − f0)|γ dx, (1.7)

where the Huber regularisation | · |γ will be defined later
on in Definition 2.1. We will see that the choice of this cost
functional is indeed crucial for the qualitative properties of
the reconstructed image.

The proposed bilevel approach has an important indirect
consequence: It establishes a basis for the comparison of
the different total variation regularisers employed in image
denoising tasks. In the last part of this paper, we exhaustively
compare the performance of TV, TGV2 and ICTV for var-
ious image datasets. The parameters are chosen optimally,
according to the proposed bilevel approach, and different
quality measures (like PSNR and SSIM) are considered for
the comparison. The obtained results are enlightening about
when to use each one of the considered regularisers. In partic-
ular, ICTV appears to behave better for images with arbitrary
structure and moderate noise levels, whereas TGV2 behaves
better for images with large smooth areas.
Outline of the paper In Sect. 2, we state the bilevel learning
problem for the two higher-order total variation regulari-
sation models, TGV and ICTV, and prove existence of an

optimal parameter pair α, β. The bilevel optimisation prob-
lem is analysed in Sect. 3, where existence of Lagrange
multipliers is proved and an optimality system, as well
as a gradient formula, is derived. Based on the optimality
condition, a BFGS algorithm for the bilevel learning prob-
lem is devised in Sect. 5.1. For the numerical solution of
each denoising problem, an infeasible semismooth Newton
method is considered. Finally, we discuss the performance
of the parameter learning method by means of several exam-
ples for the denoising of natural photographs in Sect. 5.
Therein, we also present a statistical analysis on how TV,
ICTV and TGV regularisation compare in terms of returned
image quality, carried out on 200 images from the Berkeley
segmentation dataset BSDS300.

2 Problem Statement and Existence Analysis

We strive to develop a parameter learning method for higher-
order total variation regularisationmodels thatmaximises the
fit of the reconstructed images to training images simulated
for an application at hand. For a given noisy image f ∈
L2(�), � ⊂ R

2 open and bounded, we consider

min
u

{
Rα,β(u) + 1

2
‖u − f ‖2L2(�)

}
. (2.1)

where, α, β ∈ R. We focus on TGV2,

Rα,β(u) = TGV2
α,β(u) := min

w∈BD(�)
‖α (Du − w)‖M(�;R2)

+‖β Ew‖M(�;Sym2(R2)),

and ICTV,

Rα,β(u) = ICTVα,β(u) := min
v∈W 1,1(�)
∇v∈BV (�)

‖α (Du−∇v)‖M(�;R2)

+‖β D∇v‖M(�;R2×2),
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for u ∈ BV (�). For these models, we want to determine the
optimal choice of α, β, given a particular type of images and
a fixed noise level. More precisely, we consider a training
pair ( f, f0), where f is a noisy image corrupted by normally
distributed noise with a fixed variation, and the image f0
represents the ground truth or an image that approximates the
ground truthwithin a desirable tolerance. Then,wedetermine
the optimal choice of α, β by solving the following problem:

min
(α,β)∈R2

F(uα,β) s.t. α, β ≥ 0, (2.2)

where F equals the L2
2 cost (1.6) or the Huberised TV cost

(1.7) and uα,β for a given f solves a regularised version of
the minimisation problem (2.1) that will be specified in the
next section, compare problem (2.3b). This regularisation of
the problem is a technical requirement for solving the bilevel
problem that will be discussed in the sequel. In contrast to
learning α, β in (2.1) in finite dimensional parameter spaces
(as is the case inmachine learning), we consider optimisation
techniques in infinite dimensional function spaces.

2.1 Formal Statement

Let � ⊂ R
n be an open bounded domain with Lipschitz

boundary. This will be our image domain. Usually � =
(0, w) × (0, h) for w and h the width and height of a two-
dimensional image, although no such assumptions are made
in this work. Our data f and f0 are assumed to lie in L2(�).

In our learning problem, we look for parameters (α, β)

that for some cost functional F : H1(�) → R solve the
problem

min
(α,β)∈R2

F(uα,β) (2.3a)

subject to

uα,β ∈ argmin
u∈H1(�)

J γ,μ(u;α, β) (2.3b)

α, β ≥ 0, (2.3c)

where

J γ,μ(u;α, β) := 1

2
‖u − f ‖2L2(�)

+ Rγ,μ
α,β (u).

Here J γ,μ(·;α, β) is the regularised denoising functional
that amends the regularisation term in (2.1) by a Huber-
regularised version of it with parameter γ > 0, and an elliptic
regularisation term with parameter μ > 0. In the case of
TGV2, the modified regularisation term Rγ,μ

α,β (u) then reads,

for u ∈ H1(�),

TGV2,γ,μ
α,β (u) := min

w∈H1(�)

∫
�

α |Du − w|γ dx

+
∫

�

β |Ew|γ dx

+ μ

2

(
‖u‖2H1(�)

+ ‖w‖2
H1(�)

)
,

and in the case of ICTV, we have

ICTVγ,μ
α,β (u) := min

v∈W 1,1(�)

∇v∈BV (�,Rn)∩H1(�)

∫
�

α |Du − ∇v|γ dx

+
∫

�

β |D∇v|γ dx

+ μ

2

(
‖u‖2H1(�)

+ ‖∇v‖2
H1(�)

)
.

Here,H1(�) = H1(�;Rn) and theHuber regularisation |·|γ
is defined as follows.

Definition 2.1 Given γ ∈ (0,∞], we define for the norm
‖ · ‖2 on R

m , the Huber regularisation

|g|γ =
{

‖g‖2 − 1
2γ , ‖g‖2 ≥ 1/γ,

γ
2 ‖g‖22, ‖g‖2 < 1/γ,

and its derivative, given by

hγ (g) := γ g

max(1, γ |g|) . (2.4)

For the cost functional F , given noise-free data f0 ∈
L2(�) and a regularised solution u ∈ H1(�), we consider
in particular the L2 cost

FL2
2
(u) = 1

2
‖ f0 − u‖2L2(�;Rd )

,

as well as the Huberised total variation cost

FL1
η∇(u) =

∫
�

|D( f0 − u)|γ dx

with noise-free data f0 ∈ BV(�).

Remark 2.1 Please note that in our formulation of the bilevel
problem (2.3), we only impose a non-negativity constraint on
the parameters α and β, i.e. we do not strictly bound them
away from zero. There are two reasons for that. First, for the
existence analysis of the smoothed problem, the case α =
β = 0 is not critical since compactness can be secured by
the H1 term in the functional, compare Sect. 2.2. Second, in
[19], we indeed prove that even for the non-smooth problem
(as μ → 0), under appropriate assumptions on the given
data, the optimal α, β are guaranteed to be strictly positive.
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2.2 Existence of an Optimal Solution

The existence of an optimal solution for the learning prob-
lem (2.3) is a special case of the class of bilevel problems
considered in [19], where the existence of optimal parame-
ters in (0,+∞]2N is proven. For convenience of the reader,
we provide a simplified proof for the case where additional
box constraints on the parameters are imposed. We start
with an auxiliary lower semicontinuity result for the Huber-
regularised functionals.

Lemma 2.1 Let u, v ∈ L p(�), 1 ≤ p < ∞. Then, the
functional u �→ ∫

�
|u − v|γ dx, where | · |γ is the Huber

regularisation inDefinition 2.1, is lower semicontinuouswith
respect to weak* convergence in M(�;Rd)

Proof Recall that for g ∈ R
m , the Huber-regularised norm

may be written in dual form as

|g|γ = sup
{
〈q, g〉 − γ

2
‖q‖22 : ‖q‖2 ≤ 1

}
.

Therefore, we find that

G(u) :=
∫

�

|u − v|γ dx = sup
{ ∫

�

u(x) · ϕ(x) dx

−
∫

�

γ

2
‖ϕ(x)‖22 dx :

ϕ ∈ C∞
c (�), ‖ϕ(x)‖2 ≤ 1 for every x ∈ �

}
.

The functionalG is of the formG(u) = sup{〈u, ϕ〉−G∗(ϕ)},
where G∗ is the convex conjugate of G. Now, let {ui }∞i=1
converge to u weakly* in M(�;Rd). Taking a supremising
sequence {ϕ j }∞j=1 for this functional at any point u, we eas-
ily see lower semicontinuity by considering the sequences
{〈ui , ϕ j 〉 − G∗(ϕ j )}∞i=1 for each j . ��

Our main existence result is the following.

Theorem 2.1 We consider the learning problem (2.3) for
TGV2 and ICTV regularisation, optimising over parameters
(α, β) such that 0 ≤ α ≤ ᾱ, 0 ≤ β ≤ β̄. Here (ᾱ, β̄) <

∞ is an arbitrary but fixed vector in R
2 that defines a box

constraint on the parameter space. There exists an optimal
solution (α̂, β̂) ∈ R

2 for this problem for both choices of cost
functionals, F = FL2

2
and F = FL1

η∇ .

Proof Let (αn, βn) ⊂ R
2 be a minimising sequence. Due

to the box constraints we have that the sequence (αn, βn)

is bounded in R
2. Moreover, we get for the corresponding

sequences of states un := u(αn ,βn) that

J γ,μ(un;αn, βn) ≤ J γ,μ(u;αn, βn), ∀u ∈ H1(�),

in particular this holds for u = 0. Hence,

1

2
‖un − f ‖2L2(�)

+ Rγ,μ
αn ,βn

(un) ≤ 1

2
‖ f ‖2L2(�)

. (2.5)

Exemplarily, we consider here the case for the TGV regu-
lariser, that is Rγ,μ

αn ,βn
= TGV2,γ,μ

αn ,βn
. The proof for the ICTV

regulariser can be done in a similar fashion. Inequality (2.5)
in particular gives

‖un‖2H1(�)
+ ‖wn‖2H1(�)

≤ 1

μ
‖ f ‖L2(�),

where wn is the optimal w for un . This gives that (un, wn) is
uniformly bounded in H1(�)×H

1(�) and that there exists a
subsequence {(αn, βn, un, wn)} which converges weakly in
R
2×H1(�)×H

1(�) to a limit point (α̂, β̂, û, ŵ).Moreover,
un → û strongly in L p(�) and wn → ŵ in L p(�;Rn).
Using the continuity of the L2 fidelity term with respect to
strong convergence in L2, and theweak lower semicontinuity
of the H1 termwith respect toweak convergence in H1 and of
the Huber-regularised functional even with respect to weak∗
convergence in M (cf. Lemma 2.1), we get

1

2
‖û − f ‖2L2(�)

+
∫

�

α̂ |Dû − ŵ|γ dx +
∫

�

β̂ |Ew|γ dx

+ μ

2

(
‖û‖2H1(�)

+ ‖ŵ‖2
H1(�)

)

≤ lim inf
n

1

2
‖un − f ‖2L2(�)

+
∫

�

α̂ |Dun − wn|γ dx +
∫

�

β̂ |Ewn|γ dx

+ μ

2

(
‖un‖2H1(�)

+ ‖wn‖2H1(�)

)

≤ lim inf
n

1

2
‖un − f ‖2L2(�)

+
∫

�

αn |Dun − wn|γ dx

+
∫

�

βn |Ewn|γ dx

+ μ

2

(
‖un‖2H1(�)

+ ‖wn‖2H1(�)

)
,

where in the last step we have used the boundedness of
the sequence Rγ,μ

αn ,βn
(un) from (2.5) and the convergence of

(αn, βn) inR2. This shows that the limit point û is an optimal
solution for (α̂, β̂). Moreover, due to the weak lower semi-
continuity of the cost functional F and the fact that the set
{(α, β) : 0 ≤ α ≤ ᾱ, 0 ≤ β ≤ β̄} is closed, we have that
(α̂, β̂, û) is optimal for (2.3). ��

Remark 2.2 • Using the existence result in [19], in princi-
ple we could allow infinite values forα and β. This would
include both TV2 andTV as possible optimal regularisers
in our learning problem.
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• In [19], in the case of the L2 cost and assuming that

Rγ
α,β( f ) > Rγ

α,β( f0),

we moreover show that the parameters (α, β) are strictly
larger than 0. In the case of the Huberised TV cost, this is
proven in a discretised setting. Please see [19] for details.

• The existence of solutions with μ = 0, that is without
elliptic regularisation, is also proven in [19]. Note that
here, we focus on the μ > 0 case since the elliptic reg-
ularity is required for proving the existence of Lagrange
multipliers in the next section.

Remark 2.3 In [19], it was shown that the solution map of
our bilevel problem is outer semicontinuous. This implies,
in particular, that the minimisers of the regularised bilevel
problems converge towards theminimiser of the original one.

3 Lagrange Multipliers

In this section, we prove the existence of Lagrange multipli-
ers for the learning problem (2.3) and derive an optimality
system that characterises stationary points. Moreover, a gra-
dient formula for the reduced cost functional is obtained,
which plays an important role in the development of fast
solution algorithms for the learning problems (see Sect. 5.1).

In what follows, all proofs are presented for the TGV2

regularisation case, that is Rγ
α,β = TGV2,γ

α,β . However, pos-
sible modifications to cope with the ICTV model will also
be commented. Moreover, we consider along this section a
smoother variant of the Huber regularisation, given by

|g|γ =

⎧⎪⎪⎨
⎪⎪⎩

|g| + γ
2 Lγ − Uγ

2 + Aγ

γ 2 + Bγ

γ 3 + Cγ

3γ 4

(
3 + 1

4γ 2

)
if γ |g| ≥ 1 + 1

2γ

Aγ |g| + Bγ

2 |g|2 + Cγ

3 |g|3 + Dγ if 1 − 1
2γ ≤ γ |g| ≤ 1 + 1

2γ
γ
2 |g|2 if γ |g| ≤ 1 − 1

2γ ,

with

Uγ = 1

γ

(
1 + 1

2γ

)
, Lγ = 1

γ

(
1 − 1

2γ

)
,

Aγ = 1 − γ

2

(
2γ + 1

2γ

)2

,

Bγ = γ

2
(2γ + 1), Cγ = −γ 3

2
,

Dγ = −γ 3

3
L3

γ − Aγ Lγ .

This modified Huber function is required in order to get
differentiability of the solution operator, a matter which is
investigated next.

3.1 Differentiability of the Solution Operator

We recall that the TGV2 denoising problem can be rewritten
as

y = (u, w) = argmin
BV (�)×BD(�)

{
1

2

∫
�

|u − f |2

+
∫

�

α|Du − w|γ +
∫

�

β|Ew|γ
}

.

Using an elliptic regularisation, we then get

y = argmin
H1(�)×H1(�)

{
1

2
a(y, y) + 1

2

∫
�

|u − f |2

+
∫

�

α|Du − w|γ +
∫

�

β|Ew|γ
}

,

where a(y, y) = μ
(
‖u‖2

H1 + ‖w‖2
H1

)
. A necessary and suf-

ficient optimality condition for the latter is then given by the
following variational equation:

a(y, �) +
∫

�

αhγ (Du − w)(Dφ − ϕ) dx

+
∫

�

βhγ (Ew)Eϕ dx +
∫

�

(u − f )φ dx = 0,

for all � ∈ Y, (3.1)

where � = (φ, ϕ), Y = H1(�) × H
1(�) and

hγ (g) =

⎧⎪⎨
⎪⎩

g
|g| if γ |g| ≥ 1 + 1

2γ
g
|g| (1 − γ

2 (1−γ |g|+ 1
2γ )2) if 1 − 1

2γ ≤ γ |g| ≤ 1 + 1
2γ

γ g if γ |g| ≤ 1 − 1
2γ .

(3.2)

Theorem 3.1 The solution operator S : R
2 �→ Y , which

assigns to each pair (α, β) ∈ R
2 the corresponding solution

to the denoising problem (3.1), is Fréchet differentiable and
its derivative is characterised by the unique solution z =
S′(α, β)[θ1, θ2] ∈ Y of the following linearised equation:

a(z, �) +
∫

�

θ1 hγ (Du − w)(Dφ − ϕ) dx
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+
∫

�

αh′
γ (Du − w)(Dz1 − z2)(Dφ − ϕ) dx

+
∫

�

θ2 hγ (Ew)Eϕ dx

+
∫

�

βh′
γ (Ew)Ez2Eϕ dx

+
∫

�

z1φ dx = 0, for all � ∈ Y. (3.3)

Proof Thanks to the ellipticity ofa(·, ·) and themonotonicity
of hγ , the existence of a unique solution to the linearised
equation follows from the Lax-Milgram theorem.

Let ξ := y+ − y − z, where y = S(α, β) and y+ =
S(α + θ1, β + θ2). Our aim is to prove that ‖ξ‖Y = o(|θ |).
Combining the equations for y+, y and z we get that

a(ξ,�) +
∫

�

(α + θ1) hγ (Du+ − w+)(Dφ − ϕ) dx

−
∫

�

α hγ (Du − w)(Dφ − ϕ) dx

−
∫

�

θ1 hγ (Du − w)(Dφ − ϕ) dx

−
∫

�

αh′
γ (Du − w)(Dz1 − z2)(Dφ − ϕ) dx

+
∫

�

(β + θ2)hγ (Ew+)Eϕ dx −
∫

�

βhγ (Ew)Eϕ dx

−
∫

�

θ2 hγ (Ew)Eϕ dx −
∫

�

β h′
γ (Ew)Ez2Eϕ dx

+ 2
∫

�

ξ1φ dx = 0, for all � ∈ Y,

where ξ := (ξ1, ξ2) ∈ H1(�) × H
1(�). Adding and sub-

tracting the terms

∫
�

αh′
γ (Du − w)(Dδu − δw)(Dφ − ϕ) dx

and

∫
�

βh′
γ (Ew)Eδw : Eϕ dx,

where δu := uα+θ − u and δw := wα+θ − w, we obtain that

a(ξ,�) +
∫

�

αh′
γ (Du − w)(Dξ1 − ξ2)(Dφ − ϕ)

+
∫

�

βh′
γ (Ew)Eξ2 : Eϕ dx + 2

∫
�

ξ1φ dx

= −
∫

�

α
[
hγ (Du+ − w+) − hγ (Du − w)

− h′
γ (Du − w)(Dδu − δw)

]
(Dφ − ϕ)

−
∫

�

θ1
[
hγ (Du+ − w+)

− hγ (Du − w)
]
(Dφ − ϕ) dx

−
∫

�

β
[
hγ (Ew+) − hγ (Ew) − h′

γ (Ew)Eδw

]
: Eϕ dx

−
∫

�

θ2
[
hγ (Ewα+θ ) − hγ (Ew)

] : Eϕ dx, for all � ∈ Y.

Testing with � = ξ and using the monotonicity of h′
γ (·), we

get that

‖ξ‖Y ≤ C
{|α|∥∥hγ (Du+ − w+) − hγ (Du − w)

− h′
γ (Du − w)(Dδu − δw)

∥∥
L2

+ |θ1|
∥∥hγ (Du+ − w+) − hγ (Du − w)

∥∥
L2

+ |β|
∥∥∥hγ (Ew+) − hγ (Ew) − h′

γ (Ew)Eδw

∥∥∥
L2

+ |θ2|
∥∥hγ (Ewα+θ ) − hγ (Ew)

∥∥
L2

}
,

for some generic constant C > 0. Considering the differ-
entiability and Lipschitz continuity of h′

γ (·), it then follows
that

‖ξ‖Y ≤ C
(
|α| o(∥∥y+ − y

∥∥
1,p) + |θ1| ‖yα+θ − y‖Y

+ |β| o(∥∥w+ − w
∥∥
1,p) + |θ2| ‖wα+θ − w‖

H1(�)

)
,

(3.4)

where ‖ · ‖1,p stands for the norm in the space W
1,p(�).

From regularity results for second-order systems (see [24,
Theorem 1, Remark 14]), it follows that

∥∥y+ − y
∥∥
1,p

≤ L|θ | (‖Div hγ (Du − w)‖−1,p + ‖hγ (Du − w)‖−1,p

+‖Div hγ (Ew)‖−1,p
)

≤ L|θ | (2‖hγ (Du − w)‖L∞ + ‖hγ (Ew)‖L∞
)

≤ L̃|θ |,

since |hγ (·)| ≤ 1. Inserting the latter in estimate (3.4), we
finally get that

‖ξ‖Y = o(|θ |). ��
Remark 3.1 The extra regularity result for second-order
systems used in the last proof and due to Gröger [24,
Thm. 1, Rem. 14] relies on the properties of the domain �.
The result was originally proved for C2 domains. However,
the regularity of the domain (in the sense of Gröger) may
also be verified for convex Lipschitz bounded domains [17],
which is precisely our image domain case.

Remark 3.2 The Fréchet differentiability proof makes use of
the quasilinear structure of the TGV2 variational form, mak-
ing it difficult to extend to the ICTV model without further
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regularisation terms. For the latter, however, a Gâteaux dif-
ferentiability result may be obtained using the same proof
technique as in [22].

3.2 The Adjoint Equation

Next, we use the Lagrangian formalism for deriving the
adjoint equations for both the TGV2 and ICTV learning
problems. The existence of a solution to the adjoint equa-
tion follows from the Lax-Milgram theorem.

Defining the Lagrangian associated to the TGV2 learning
problem by

L(u, w, α, β, p1, p2) = F(u) + μ(u, p1)H1 + μ(w, p2)H1

+
∫

�

αhγ (Du − w)(Dp1 − p2)

+
∫

�

βhγ (Ew)Ep2 +
∫

�

(u − f )p1,

and taking the derivative with respect to the state variable
(u, w), we get the necessary optimality condition

L′
(u,w)(u, w, α, β, p1, p2)[(δu, δw)]

= F ′(u)δu + μ(p1, δu)H1 + μ(p2, δw)H1

+
∫

�

αh′
γ (Du − w)(Dδu − δw)(Dp1 − p2)

+
∫

�

βh′
γ (Ew)EδwEp2 +

∫
�

p1δu = 0.

If δw = 0, then

μ(p1, δu)H1 +
∫

�

αh′
γ (Du − w)(Dp1 − p2)Dδu

+
∫

�

p1δu = −∇u F(u)δu, for all δu ∈ H1(�), (3.5)

whereas if δu = 0, then

μ(p2, δw)H1 −
∫

�

αh′
γ (Du − w)(Dp1 − p2)δw

+
∫

�

βh′
γ (Ew) Ep2 Eδw = 0, for all δw ∈ H

1(�).

(3.6)

Theorem 3.2 Let (u, w) ∈ H1(�) ×H
1(�). There exists a

unique solution  = (p1, p2) ∈ Y = H1(�) × H
1(�) to

the adjoint system

μ(, δy)Y +
∫

�

αh′
γ (Du − w)(Dδu − δw)(Dp1 − p2)

+
∫

�

βh′
γ (Ew)EδwEp2 +

∫
�

p1δv

= −F ′(u)δu, for all δy ∈ Y. (3.7)

The corresponding solution is called adjoint state associated
to (v,w).

Proof We have to show that the left-hand side of equation
(3.7) constitutes a bilinear, continuous and coercive form on
Y × Y . Linearity and continuity follows immediately. For
the coercivity, let us take δy = . Since hγ is a monotone
function, the terms

∫
�

αh′
γ (Du−w)(Dp1 − p2)(Dp1 − p2)

and
∫
�

βh′
γ (Ew)Ep2Ep2 become positive, yielding

μ‖‖2Y +
∫

�

αh′
γ (Du − w)(Dp1 − p2)(Dp1 − p2)

+
∫

�

βh′
γ (Ew)Ep2Ep2 +

∫
�

p21 ≥ μ‖‖2Y .

Thus, coercivity holds and, using Lax-Milgram theorem, we
conclude that there exists a unique solution to the adjoint
system (3.7). ��

Remark 3.3 For the ICTV model, it is possible to proceed
formally with the Lagrangian approach. We recall that a
necessary and sufficient optimality condition for the ICTV
functional is given by

μ(u, φ)H1+μ(∇v,∇ϕ)H1 +
∫

�

αhγ (Du−∇v)(Dφ−∇ϕ)

+
∫

�

βhγ (D∇v)D∇ϕ +
∫

�

(u − f )φ = 0,

for all (φ, ϕ) ∈ H1(�) × H
1(�) (3.8)

and the correspondent Lagrangian functional L is given by

L(u, v, α, β, p1, p2) = F(u) + μ(u, p1)H1

+μ(∇v,∇ p2)H1 +
∫

�

αhγ (Du − ∇v)(Dp1 − ∇ p2)

+
∫

�

βhγ (D∇v)D∇ p2 +
∫

�

(u − f )p1.

Deriving the Lagrangian with respect to the state variables
(u, v) and setting it equal to zero yields

L′
(u,v)(u, v, α, β, p1, p2)[(δu, δv)]

= F ′(u)δu + μ(p1, δu)H1 + μ(∇ p2,∇δv)H1

+
∫

�

αh′
γ (Du − ∇v)(Dδu − ∇δv)(Dp1 − ∇ p2)

+
∫

�

βh′
γ (D∇v)D∇δvD∇ p2 +

∫
�

p1δu = 0.
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By taking successively δv = 0 and δu = 0, the following
adjoint system is obtained

μ(p1, δu)H1 +
∫

�

αh′
γ (Du − ∇v)(Dp1 − ∇ p2)Dδu

+
∫

�

p1δu = −F ′(u)δu, (3.9a)

μ(∇ p2,∇δv)H1 +
∫

�

αh′
γ (Du − ∇v)(Dp1 − ∇ p2)∇δv

+
∫

�

βh′
γ (D∇v)D∇ p2D∇δv = 0. (3.9b)

3.3 Optimality Condition

Using the differentiability of the solution operator and the
well-posedness of the adjoint equation, we derive next an
optimality system for the characterisation of local minima
of the bilevel learning problem. Besides the optimality con-
dition itself, a gradient formula arises as byproduct, which
is of importance in the design of solution algorithms for the
learning problems.

Theorem 3.3 Let (ᾱ, β̄) ∈ R
2+ be a local optimal solution

for problem (2.3). Then there exist Lagrange multipliers ∈
Y := H1(�)×H

1(�) andλ1, λ2 ∈ R such that the following
system holds

a(y, �) + α

∫
�

hγ (Du − w)(Dφ − ϕ) dx

+β

∫
�

hγ (Ew)Eϕ dx +
∫

�

(u − f )φ dx = 0, for all

� = (φ, ϕ) ∈ Y, (3.10a)

a(,�) + α

∫
�

h′
γ (Du − w)(Dp1 − p2)(Dφ − ϕ) dx

+β

∫
�

h′
γ (Ew) Ep2 Eϕ dx +

∫
�

p1φ dx = −Fu(u)[φ],
for all � = (φ, ϕ) ∈ Y, (3.10b)

λ1 =
∫

�

hγ (Du − w)(Dp1 − p2), (3.10c)

λ2 =
∫

�

hγ (Ew), Ep2 (3.10d)

λ1 ≥ 0, λ2 ≥ 0, (3.10e)

λ1 · ᾱ = λ2 · β̄ = 0. (3.10f)

Proof Consider the reduced cost functional F(α, β) =
F(u(α, β)). The bilevel optimisation problem can then be
formulated as

min
(α,β)∈C F(α, β),

whereF : R2 → R andC corresponds to the positive orthant
inR2. From [47, Thm. 3.1], there existmultipliersλ1, λ2 ∈ R

such that

λ1 = ∇αF(ᾱ, β̄),

λ2 = ∇βF(ᾱ, β̄),

λ1 ≥ 0, λ2 ≥ 0,

λ1 · ᾱ = λ2 · β̄ = 0.

By taking the derivative with respect to (α, β) and denot-
ing by z the solution to the linearised equation (3.3), we get,
together with the adjoint equation (3.10b), that

F ′(α, β)[θ1, θ2] = Fu(u)z1 = −a(, z)

− α

∫
�

h′
γ (Du − w)(Dp1−p2)(Dz1−z2)

− β

∫
�

h′
γ (Ew)Ep2 Ez2 −

∫
�

p1z1

= −a(z,)

− α

∫
�

h′
γ (Du − w)(Dz1−z2)(Dp1−p2)

− β

∫
�

h′
γ (Ew)Ez2 Ep2 −

∫
�

z1 p1

which, taking into account the linearised equation, yields

F ′(α, β)[θ1, θ2] = θ1

∫
�

hγ (Du − w)(Dp1 − p2)

+ θ2

∫
�

hγ (Ew)Ep2. (3.11)

Altogether we proved the result. ��
Remark 3.4 From the existence result (see Remark 2.2), we
actually know that, under some assumptions on F , ᾱ and β̄

are strictly greater than zero. This implies that the multipliers
λ1 and λ2 may be zero, and the problem becomes an uncon-
strained one. This plays an important role in the design of
solution algorithms, since only a mild treatment of the con-
straints has to be taken into account, as shown in Sect. 6.

4 Numerical Algorithms

In this section, we propose a second-order quasi-Newton
method for the solution of the learning problem with scalar
regularisation parameters. The algorithm is based on a BFGS
update, preserving the positivity of the iterates through
the line search strategy and updating the matrix cyclically
depending on the satisfaction of the curvature condition.
For the solution of the lower level problem, a semismooth
Newton method with a properly modified Jacobi matrix is
considered. Moreover, warm initialisation strategies have to
be taken into account in order to get convergence for the
TGV2 problem.
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4.1 BFGS Algorithm

Thanks to the gradient characterisation obtained in Theorem
3.3, we next devise a BFGS algorithm to solve the bilevel
learning problemswith higher-order regularisers.We employ
a few technical tricks to ensure convergence of the classical
method. In particular, we limit the step length to get at most a
fraction closer to the boundary. As shown in [19], the solution
is in the interior for the regularisation and cost functionals
we are interested in.

Moreover, the good behaviour of the BFGS method
depends upon theBFGSmatrix staying positive definite. This
would be ensured by theWolfe conditions, but because of our
step length limitation, the curvature condition is not neces-
sarily satisfied. (The Wolfe conditions are guaranteed to be
satisfied for some step length σ , if our domain is unbounded,
but the range, where the step satisfies the criterion, may be
beyond our maximum step length and is not necessarily sat-
isfied closer to the current point.) Instead, we skip the BFGS
update if the curvature is negative.

Overall, our learning algorithmmay be written as follows:

Algorithm 4.1 (BFGS for denoising parameter learning)
PickArmijo line search constant c, and target residualρ. Pick
initial iterate (α0, β0). Solve the denoising problem (2.3b)
for (α, β) = (α0, β0), yielding u0. Initialise B1 = I . Set
i := 0, and iterate the following steps:

(1) Solve the adjoint equation (3.10b) for i , and calculate
∇F(αi , β i ) from (3.11).

(2) If i ≥ 2, do the following:

(a) Set s := (αi , β i )−(αi−1, β i−1), and r := ∇F(αi , β i )

− ∇F(αi−1, β i−1).
(b) Perform the BFGS update

Bi :=
{
Bi−1, sT r ≤ 0,

Bi−1 − (Bi−1s)(Bi−1s)T

tT Bi−1s
+ rrT

sT r
sT r > 0.

(3) Compute δα,β from

Biδα,β = gi .

(4) Initialise σ := min{1, σmax/2}, where

σmax := max{σ ≥ 0 | (αi , β i ) + σδα,β > 0}.

Repeat the following:

(a) Let (ασ , βσ ) := (αi , β i ) + σδα,β , and solve the
denoising problem (2.3b) for (α, β) = (ασ , βσ ),
yielding uσ .

(b) If the residual ‖(ασ , βσ ) − (αi , β i )‖/‖(ασ , βσ )‖ <

ρ, do the following:

(i) If minσ F(ασ , βσ ) < F(αi , β i ) over all σ tried,
choose σ ∗ the minimiser, set (αi+1, β i+1) :=
(ασ ∗ , βσ ∗), ui+1 := uσ ∗ , and continue fromStep
5.

(ii) Otherwise end the algorithm with solution (α∗,
β∗) := (αi , β i ).

(c) Otherwise, if Armijo condition F(ασ , βσ ) ≤ F(αi ,

β i )+σc∇F(αi , β i )T δα,β holds, set (αi+1, β i+1) :=
(ασ , βσ ), ui+1 := uσ , and continue from Step 5.

(d) In all other cases, set σ := σ/2 and continue from
Step 4a.

(5) If the residual ‖(αi+1, β i+1)−(αi , β i )‖/‖(αi+1, β i+1)‖
< ρ, end the algorithm with (α∗, β∗) := (αi+1, β i+1).
Otherwise continue from Step 1 with i := i + 1.

Step (4) ensures that the iterates remain feasible, without
making use of a projection step.

4.2 An Infeasible Semismooth Newton Method

In this section, we consider semismooth Newton methods
for solving the TGV2 and the ICTV denoising problems.
SemismoothNewtonmethods feature a local superlinear con-
vergence rate and have been previously successfully applied
to image processing problems (see, e.g. [21,29,32]). The
primal-dual algorithm we use here is an extension of the
method proposed in [29] to the case of higher-order regu-
larisers.

In variational form, the TGV2 denoising problem can be
written as

μ

∫
�

(Du · Dφ + vφ) +
∫

�

αhγ (Du − w)Dφ

+
∫

�

(u − f )φ = 0, ∀φ ∈ H1(�)

μ

∫
�

(Ew : Eϕ + wϕ) −
∫

�

αhγ (Du − w)Dϕ

+
∫

�

βhγ (Ew) Eϕ = 0, ∀ϕ ∈ H
1(�)

or, in general abstract primal-dual form, as

Ly +
N∑
i=1

A∗
j q j = f in �, (4.1a)

max{1/γ, |[A j y](x)|2}q j (x) − α j [A j y](x) = 0 a.e. in �,

j = 1, . . . , N . (4.1b)

where L ∈ L(H1(�;Rm), H1(�;Rm)′) is a second-order
linear elliptic operator, A j , j = 1, . . . , N , are linear opera-
tors acting on y and q j (x), j = 1, . . . , N , correspond to the
dual multipliers.
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Let us set

m j (y) := max{1/γ, |[A j y](x)|2}.

Let us also define the diagonal applicationD(y) : L2(�;Rm)

→ L2(�;Rm) by

[D(y)q](x) = y(x)q(x), (x ∈ �)

We may derive ∇y[D(m j (y))q j ] being defined by

∇y[D(m j (y))p j ] = A∗
jD(q j )N(A j y)

where N(z) :=
{
0, |z(x)|2 < 1/γ
z(x)

|z(x)|2 , |z(x)|2 ≥ 1/γ.

Then (4.1a), (4.1b) may be written as

Ly +
N∑
i=1

A∗
j q j = f in �

D(m j (y))q j−α j A j y=0, a.e. in �, ( j = 1, . . . , N ).

Linearising, we obtain the system

⎛
⎜⎜⎜⎜⎝

L A∗
1 . . . A∗

N
−α1A1 + N(A1y)D(q1)A1 D(mj (y)) 0 0

.

.

. 0
. . . 0

−αN AN + N(AN y)D(qN )AN 0 0 D(mN (y))

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

δy
δq1
.
.
.

δqN

⎞
⎟⎟⎟⎟⎠ = R

(SSN-1)

where

R :=

⎛
⎜⎜⎜⎝

−Ly −∑N
i=1 A

∗
j q j + f

α1A1y − D(m1(y))q1
...

αN AN y − D(mN (y))qN

⎞
⎟⎟⎟⎠ .

The semismooth Newton method solves (SSN-1) at a current
iterate (yi , qi1, . . . q

i
N ). It then updates

(yi+1, q̃i+1
1 , . . . q̃i+1

N ) (SSN-2)

:= (yi + τδy, qi1 + τδq1, q
i
N + τδqN ),

for a suitable step length τ , allowing q̃i+1 to become infeasi-
ble in the process. That is, it may hold that |̃qi+1

j (x)|2 > α j ,
which may lead to non-descent directions. In order to glob-
alise the method, one projects

qi+1
j := P(q̃i+1

j ;α j ), where P(q, α)(x) (SSN-3)

:= sgn(q(x))min{α, |q(x)|},

in the building of the Jacobi matrix. Following [29,42],
it can be shown that a discrete version of the method

(SSN-1)–(SSN-3) converges globally and locally superlin-
early near a pointwhere the subdifferentials of the operator on
(y, q1, . . . qN ) corresponding (4.1) are non-singular. Further
dampening as in [29] guarantees local superlinear conver-
gence at any point. We do not present the proof, as going
into the discretisation and dampening details would expand
this work considerably.

Remark 4.1 The system (SSN-1) can be further simplified,
which is crucial to obtain acceptable performance with
TGV2. Indeed, observe that B is invertible, so we may solve
δu from

Bδy = R1 −
N∑
j=1

A∗
jδq j . (4.2)

Thus, we may simplify δy out of (SSN-1) and only solve
for δq1, . . . , δqN using a reduced system matrix. Finally, we
calculate δy from (4.2).

For the denoising sub-problem (2.3b), we use the method
(SSN-1)–(SSN-3) with the reduced systemmatrix of Remark
4.1. Here, we denote by y in the case of TGV2 the parameters

y = (u, w),

and in the case of ICTV

y = (u, v).

For the calculation of the step length τ , we use Armijo line
search with parameter c = 1e−4. We end the SSN iterations
when

τ
‖δY i‖

max{1, ‖Y i‖} ≤ 1e−5,

where δY i := (δyi , δqi1, . . . , δq
i
N ), and Y i := (yi , qi1, . . . ,

qiN ).

4.3 Warm Initialisation

In our numerical experimentation, we generally found Algo-
rithm 4.1 to perform well for learning the regularisation
parameter for TV denoising as was done in [22]. For learning
the two (or even more) regularisation parameters for TGV2

denoising, we found that a warm initialisation is needed to
obtain convergence. More specifically, we use TV as an aid
for discovering both the initial iterate (α0, β0) as well as the
initial BFGS matrix B1. This is outlined in the following
algorithm:

Algorithm 4.2 (BFGS initialisation for TGV2 parameter
learning) Pick a heuristic factor δ0 > 0. Then do the fol-
lowing:
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Table 1 Quantified results for
the parrot image (� = 256 =
image width/height in pixels)

Denoise Cost Initial (α,β) Result (α*, β*) Cost SSIM PSNR Its. Fig.

TGV2 L1
η∇ (α∗

TV/�, α∗
TV) (0.069/�2, 0.051/ �) 6.615 0.897 31.720 12 4c

TGV2 L2
2 (α∗

TV/�, α∗
TV) (0.058/�2, 0.041/�) 6.412 0.890 31.992 11 4d

ICTV L1
η∇ (α∗

TV/�, α∗
TV) (0.068/ �2, 0.051/�) 6.656 0.895 31.667 16 4e

ICTV L2
2 (α∗

TV/�, α∗
TV) (0.051/�2, 0.041/�) 6.439 0.887 31.954 7 4f

TV L1
η∇ 0.1/� 0.057/� 6.944 0.887 31.298 10 4g

TV L2
2 0.1/� 0.042/� 6.623 0.879 31.710 12 4h

(1) Solve the corresponding problem for TV using Algo-
rithm 4.1. This yields optimal TV denoising parameter
α∗
TV, as well as the BFGS estimate BTV for ∇2F(α∗

TV).
(2) Run Algorithm 4.1 for TGV2 with initialisation (α0, β0)

:= (α∗
TVδ0, α

∗
TV), and initial BFGS matrix B1 :=

diag(BTVδ0, BTV).

With � = (0, 1)2, we pick δ0 = 1/�, where the orig-
inal discrete image has � × � pixels. This corresponds to
the heuristic [2,44] that if � ≈ 128 or 256, and the discrete
image is mapped into the corresponding domain� = (0, �)2

directly (corresponding to spatial step size of one in the dis-
crete gradient operator), then β ∈ (α, 1.5α) tends to be a
good choice. We will later verify this through the use of
our algorithms. Now, if f ∈ BV((0, �)2) is rescaled to
BV((0, 1)2), i.e. f̃ (x) := f (x/�), then with ũ(x) := u(x/�)
and w̃(x) := w(x/�)/�, we have the theoretical equivalence

1

2
‖ f − u‖2L2((0,�)2) + α‖Du − w‖M((0,�)2;R2)

+β‖Ew‖M((0,�)2;R2×2) (4.3)

= n2
(
1

2
‖ f̃ − ũ‖2L2((0,1)2) + nα‖Dũ − w̃‖M((0,1)2;R2)

+n2β‖Ew̃‖M((0,1)2;R2×2)

)
. (4.4)

This introduces the factor 1/� = |�|−1/2 between rescaled
α, β.

5 Experiments

In this section, we present some numerical experiments to
verify the theoretical properties of the bilevel learning prob-
lems and the efficiency of the proposed solution algorithms.
In particular, we exhaustively compare the performance of
the new proposed cost functional with respect to well-known
quality measures, showing a better behaviour of the new
cost for the chosen tested images. The performance of the
proposed BFGS algorithm, combined with the semismooth
Newton method for the lower level problem, is also exam-
ined.

Moreover, on basis of the learning setting proposed, a
thorough comparison between TGV2 and ICTV is carried
out. The use of higher-order regularisers in image denoising
is rather recent, and the question on whether TGV2 or ICTV
performs better has been around.We target that question and,
on basis of the bilevel learning approach, we are able to give
some partial answers.

5.1 Gaussian Denoising

We tested Algorithm 4.1 for TV andAlgorithm 4.2 for TGV2

Gaussian denoising parameter learning on various images.
Here we report the results for two images, the parrot image
in Fig. 4a, and the geometric image in Fig. 5. We applied
synthetic noise to the original images, such that the PSNR
of the parrot image are 24.7, and the PSNR of the geometric
image is 24.8.

In order to learn the regularisation parameter α for TV, we
picked initial α0 = 0.1/�. For TGV2, initialisation by TV
was used as in Algorithm 4.1. We chose the other parameters
of Algorithm 4.1 as c = 1e−4, ρ = 1e−5, θ = 1e−8, and
� = 10. For the SSN denoising method, the parameters
γ = 100 and μ = 1e−10 were chosen.

We have included results for both the L2-squared cost
functional L2

2 and the Huberised total variation cost func-
tional L1

η∇. The learning results are reported in Table 1 for
the parrot images, and Table 2 for the geometric image. The
denoising results with the discovered parameters are shown
in Figs 4 and 5. We report the resulting optimal parameter
values, the cost functional value, PSNR, SSIM [46], as well
as the number of iterations taken by the outer BFGS method.

Our first observation is that all approaches success-
fully learn a denoising parameter that gives a good-quality
denoised image. Secondly, we observe that the gradient cost
functional L1

η∇ performs visually and in terms of SSIM sig-
nificantly better for TGV2 parameter learning than the cost
functional L2

2. In terms of PSNR, the roles are reversed, as
should be, since the L2

2 is equivalent to PSNR. This again
confirms that PSNR is a poor-quality measure for images.
For TV, there is no significant difference between different
cost functionals in terms of visual quality, although the PSNR
and SSIM differ.
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Table 2 Quantified results for
the synthetic image (� = 256 =
image width/height in pixels)

Denoise Cost Initial �α Result �α∗ Value SSIM PSNR Its. Fig.

TGV2 L1
η∇ (α∗

TV/�, α∗
TV) (0.453/�2, 0.071/�) 3.769 0.989 36.606 17 5c

TGV2 L2
2 (α∗

TV/�, α∗
TV) (0.307/�2, 0.055/�) 3.603 0.986 36.997 19 5d

ICTV L1
η∇ (α∗

TV/�, α∗
TV) (0.505/�2, 0.103/�) 4.971 0.970 34.201 23 5e

ICTV L2
2 (α∗

TV/�, α∗
TV) (0.056/�2, 0.049/�) 3.947 0.965 36.206 7 5f

TV L1
η∇ 0.1/� 0.136/� 5.521 0.966 33.291 6 5g

TV L2
2 0.1/� 0.052/� 4.157 0.948 35.756 7 5h
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(a) Parrot, TGV2, L1
η∇ cost functional
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(b) Parrot, TGV2, L2
2 cost functional

Fig. 3 Cost functional value versus (α, β) for TGV2 denoising, for the parrot test images, for both L2
2 and L1

η∇ cost functionals. The illustrations
are contour plots of function value versus (α, β)

We also observe that the optimal TGV2 parameters
(α∗, β∗) generally satisfy β∗/α∗ ∈ (0.75, 1.5)/�. This con-
firms the earlier observed heuristic that if � ≈ 128, 256 then
β ∈ (1, 1.5)α tends to be a good choice. As we can observe
from Figs. 4 and 5, this optimal TGV2 parameter choice also
avoids the staircasing effect that can be observed with TV in
the results.

In Fig. 3, we have plotted by the red star the discovered
regularisationparameter (α∗, β∗) reported inFig. 4. Studying
the location of the red star, we may conclude that Algorithms
4.1 and 4.2manage to find a nearly optimal parameter in very
few BFGS iterations.

5.2 Statistical Testing

To obtain a statistically significant outlook to the perfor-
mance of different regularisers and cost functionals, wemade
use of the Berkeley segmentation dataset BSDS300 [36], dis-
played in Fig. 6. We resized each image to 128 pixels on its
shortest edge and take the 128 × 128 top left square of the
image. To this dataset, we applied pixelwise Gaussian noise
of variance σ 2 = 2, 10, and 20. We tested the performance
of both cost functionals, L1

η∇ and L2
2, as well as the TGV

2,
ICTV, and TV regularisers on this dataset, for all noise lev-

els. In the first instance, reported in Figs. 7, 8, 9 and 10 (noise
levels σ 2 = 2, 20 only), and Tables 3, 4 and 5, we applied the
proposed bilevel learning model on each image individually,
to learn the optimal parameters specifically for that image,
and a corresponding noisy image for all of the noise levels
separately. For the algorithm, we use the same parametrisa-
tion as presented in Sect. 5.1.

The figures display the noisy images and indicate by
colour coding the best result as judged by the structural sim-
ilarity measure SSIM [46], PSNR and the objective function
value (L1

η∇ or L2
2 cost). These criteria are, respectively, the

top, middle and bottom rows of colour-coding squares. Red
square indicates that TV performed the best, green square
indicates that ICTV performed the best and blue square indi-
cates that TGV2 performed the best—this is naturally for
the optimal parameters for the corresponding regulariser and
cost functional discovered by our algorithms.

In the tables, we report the information in a more concise
numerical fashion, indicating the mean, standard deviation
andmedian for all the different criteria (SSIM,PSNRandcost
functional value), as well as the number of images for which
each regulariser performed the best. We recall that SSIM is
normalised to [0, 1], with higher value better. Moreover, we
performa statistical 95paired t-test on eachof the criteria, and
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(a) Original image (b) Noisy image

(c) TGV2 denoising, L1
η∇ cost (d) TGV2 denoising, L2

2 cost

(e) ICTV denoising, L1
η∇ cost (f ) ICTV denoising, L2

2 cost

(g) TV denoising, L1
η∇ cost (h) TV denoising, L2

2 cost

Fig. 4 Optimal denoising results for initial guess �α = (α∗
TV/�, α∗

TV)

for TGV2 and �α = 0.1/� for TV

a pair of regularisers, to see whether any pair of regularisers
can be ordered. If so, this is indicated in the last row of each
of the tables.

Overall, studying the t-test and other data, the ordering of
the regularisers appears to be

ICTV > TGV2 > TV.

(a) Original image (b) Noisy image

(c) TGV2 denoising, L1
η∇ cost (d) TGV2 denoising, L2

2 cost

(e) ICTV denoising, L1
η∇ cost (f ) ICTV denoising, L2

2 cost

(g) TV denoising, L1
η∇ cost (h) TV denoising, L2

2 cost

Fig. 5 Optimal denoising results for initial guess �α = (α∗
TV/�, α∗

TV)

for TGV2 and �α = 0.2/� for TV

This is rather surprising, as inmany specific examples, TGV2

has been observed to perform better than ICTV, see Figs. 4
and 5, as well as [1,5]. Only when the noise is high, appears
TGV2 to comeonparwith ICTVwith the L1

η∇ cost functional
in Fig. 9 and Table 5.

A more detailed study of the results in Figs. 7, 8, 9 and 10
seems to indicate that TGV2 performs better than ICTVwhen
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Fig. 6 The 200 images of the
Berkeley segmentation dataset
BSDS300 [36], cropped to be
rectangular, keeping top left
corner, and resized to 128× 128

Fig. 7 Ordering of regularisers
with individual learning, L1

η∇
cost, and noise variance σ 2 = 2,
on the 200 images of the
BSDS300 dataset, resized. Best
regulariser: red TV, green ICTV,
blue TGV2; top SSIM, middle
PSNR, bottom objective value

Fig. 8 Ordering of regularisers
with individual learning, L2

2
cost, and noise variance σ 2 = 2,
on the 200 images of the
BSDS300 dataset, resized. Best
regulariser: red TV, green ICTV,
blue TGV2; top SSIM, middle
PSNR, bottom objective value

the image contains large smooth areas, but ICTV generally
seems to perform better for images with more complicated
and varying contents. This observation agreeswith the results
in Figs. 4 and 5, as well as [1,5], where the images are of the
former type.

One possible reason for the better performance of ICTV
could be that TGV2 has more degrees of freedom—in ICTV
we essentially constrain w = ∇v for some function v—
and therefore overfits to the noisy data, until the noise level
becomes so high that overfitting would become too high for
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Fig. 9 Ordering of regularisers
with individual learning, L1

η∇
cost, and noise variance
σ 2 = 20, on the 200 images of
the BSDS300 dataset, resized.
Best regulariser: red TV, green
ICTV, blue TGV2; top SSIM,
middle PSNR, bottom objective
value

Fig. 10 Ordering of
regularisers with individual
learning, L2

2 cost, and noise
variance σ 2 = 20, on the 200
images of the BSDS300 dataset,
resized. Best regulariser: red
TV, green ICTV, blue TGV2;
top SSIM, middle PSNR, bottom
objective value

Table 3 Regulariser performance with individual learning, L2
2 and L1

η∇ costs and noise variance σ 2 = 2; BSDS300 dataset, resized

SSIM PSNR Value

Mean Std Med Best Mean Std Med Best Mean Std Med Best

Noisy data 0.978 0.015 0.981 0 41.56 0.86 41.95 0 2.9E4 3.1E2 2.9E4 0

L1
η∇−TV 0.988 0.005 0.989 1 42.57 1.10 42.46 5 2.4E4 3.7E3 2.5E4 1

L1
η∇−ICTV 0.989 0.005 0.990 141 42.74 1.16 42.62 143 2.3E4 3.9E3 2.4E4 137

L1
η∇−TGV2 0.989 0.005 0.989 58 42.70 1.17 42.55 52 2.4E4 4.0E3 2.5E4 62

95 % t test ICTV > TGV2 > TV ICTV > TGV2 > TV ICTV > TGV2 > TV

L2
2−TV 0.988 0.005 0.988 2 42.64 1.14 42.50 2 0.41 0.08 0.43 2

L2
2−ICTV 0.988 0.005 0.989 142 42.79 1.18 42.64 148 0.39 0.08 0.41 148

L2
2−TGV2 0.988 0.005 0.989 56 42.76 1.19 42.58 50 0.40 0.08 0.42 50

95 % t test ICTV > TGV2 > TV ICTV > TGV2 > TV ICTV > TGV2 > TV

any parameter. To see whether this is true, we also performed
batch learning, learning a single set of parameters for all
images with the same noise level. That is, we studied the
model

min
�α

N∑
i=1

Fi (ui,�α) s.t. ui,�α ∈ argmin
u∈H1(�)

1

2
‖ fi − u‖2L2(�)

+ Rγ,μ

�α (u),
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Table 4 Regulariser performance with individual learning, L2
2 and L1

η∇ costs and noise variance σ 2 = 10; BSDS300 dataset, resized

SSIM PSNR Value

Mean Std Med Best Mean Std Med Best Mean Std Med Best

Noisy data 0.731 0.120 0.744 0 27.72 0.88 28.09 0 1.4E5 2.5E3 1.4E5 0

L1
η∇−TV 0.898 0.036 0.900 4 31.28 1.63 30.97 8 7.3E4 2.2E4 7.3E4 1

L1
η∇−ICTV 0.906 0.034 0.909 139 31.54 1.68 31.21 142 7.1E4 2.2E4 7.1E4 121

L1
η∇−TGV2 0.905 0.035 0.907 57 31.47 1.72 31.10 50 7.1E4 2.2E4 7.1E4 78

95 % t test ICTV > TGV2 > TV ICTV > TGV2 > TV ICTV > TGV2 > TV

L2
2−TV 0.897 0.033 0.898 9 31.54 1.76 31.15 2 5.52 1.89 5.51 2

L2
2−ICTV 0.903 0.032 0.903 131 31.72 1.76 31.33 148 5.30 1.81 5.35 148

L2
2−TGV2 0.902 0.033 0.903 60 31.67 1.80 31.28 50 5.38 1.87 5.39 50

95 % t test ICTV > TGV2 > TV ICTV > TGV2 > TV ICTV > TGV2 > TV

Table 5 Regulariser performance with individual learning, L2
2 and L1

η∇ costs and noise variance σ 2 = 20; BSDS300 dataset, resized

SSIM PSNR Value

Mean Std Med Best Mean Std Med Best Mean Std Med Best

Noisy data 0.505 0.143 0.516 0 21.80 0.92 22.14 0 2.8E5 7.9E3 2.8E5 0

L1
η∇−TV 0.795 0.063 0.799 7 27.27 1.64 27.02 11 1.0E5 3.5E4 9.7E4 1

L1
η∇−ICTV 0.810 0.061 0.814 120 27.52 1.66 27.24 125 9.7E4 3.4E4 9.6E4 79

L1
η∇−TGV2 0.808 0.062 0.814 73 27.50 1.74 27.15 64 9.8E4 3.5E4 9.5E4 120

95 % t test ICTV > TGV2 > TV ICTV, TGV2 > TV ICTV, TGV2 > TV

L2
2−TV 0.802 0.056 0.804 8 27.70 1.93 27.28 0 13.65 5.53 13.14 0

L2
2−ICTV 0.811 0.056 0.816 126 27.86 1.91 27.45 138 13.14 5.22 12.62 138

L2
2−TGV2 0.810 0.057 0.814 66 27.83 1.94 27.41 62 13.28 5.38 12.77 62

95 % t test ICTV > TGV2 > TV ICTV > TGV2 > TV ICTV > TGV2 > TV

with

Fi (u) = 1

2
‖ f0,i − u‖2L2(�)

, or Fi (u)

=
∫

�

|∇( f0,i − u)|γ dx,

where �α = (α, β), f1, . . . , fN are the N = 200 noisy images
with the same noise level, and f0,1, . . . , f0,N the original
noise-free images.

The results are shown in Figs. 11, 12, 13 and 14 (noise
levels σ 2 = 2, 20 only), and Tables 6, 7 and 8. The results
are still roughly the same as with individual learning. Again,
only with high noise in Table 8, TGV2 does not lose to ICTV.
Another interesting observation is that TV starts to be fre-
quently the best regulariser for individual images, although
still statistically does worse than either ICTV or TGV2.

For the first image of the dataset, ICTV does in all of
the Figs. 7, 8, 9, 10, 11, 12, 13 and 14 better than TGV2,
while for the second image, the situation is reversed. We
have highlighted these two images for the L1

η∇ cost in Figs.

15, 16, 17 and 18, for both noise levels σ = 2 and σ = 20.
In the case where ICTV does better, hardly any difference
can be observed by the eye, while for second image, TGV2

clearly has less staircasing in the smooth areas of the image,
especially with the noise level σ = 20.

Based on this study, it therefore seems that ICTV is the
most reliable regulariser of the ones tested, when the type of
image being processed is unknown, and low SSIM, PSNR or
L1

η∇ cost functional value is desired. But as can be observed
for individual images, it canwithin large smooth areas exhibit
artefacts that are avoided by the use of TGV2.

5.3 The Choice of Cost Functional

The L2
2 cost functional naturally obtains better PSNR than

L1
η∇, as the two former are equivalent. Comparing the results

for the two cost funtionals in Tables 3, 4 and 5, we may
however observe that for low noise levels σ 2 = 2, 10,
and generally for batch learning, L1

η∇ attains better (higher)
SSIM. Since SSIM better captures [46] the visual quality of
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Fig. 11 Ordering of
regularisers with batch learning,
L1

η∇ cost, and noise variance

σ 2 = 2, on the 200 images of
the BSDS300 dataset, resized.
Best regulariser: red TV, green
ICTV, blue TGV2; top SSIM,
middle PSNR, bottom objective
value

Fig. 12 Ordering of
regularisers with batch learning,
L2
2 cost, and noise variance

σ 2 = 2, on the 200 images of
the BSDS300 dataset, resized.
Best regulariser: red TV, green
ICTV, blue TGV2; top SSIM,
middle PSNR, bottom objective
value

Fig. 13 Ordering of
regularisers with batch learning,
L1

η∇ cost, and noise variance

σ 2 = 20, on the 200 images of
the BSDS300 dataset, resized.
Best regulariser: red TV, green
ICTV, blue TGV2; top SSIM,
middle PSNR, bottom objective
value

images than PSNR, this recommends the use of our novel
total variation cost functional L1

η∇. Of course, one might
attempt to optimise the SSIM. This is however a non-convex
functional, which will pose additional numerical challenges
avoided by the convex total variation cost.

6 Conclusion and Outlook

In this paper, we propose a bilevel optimisation approach in
function space for learning the optimal choice of parameters
in higher-order total variation regularisation. We present a
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Fig. 14 Ordering of
regularisers with batch learning,
L2
2, cost, and noise variance

σ 2 = 20, on the 200 images of
the BSDS300 dataset, resized.
Best regulariser: red TV, green
ICTV, blue TGV2; top SSIM,
middle PSNR, bottom objective
value

Table 6 Regulariser performance with batch learning, L1
η∇ and L2

2 costs, noise variance σ 2 = 2; BSDS300 dataset, resized

SSIM PSNR Value

Mean Std Med Best Mean Std Med Best Mean Std Med Best

Noisy data 0.978 0.015 0.981 16 41.56 0.86 41.95 24 2.9E4 3.1E2 2.9E4 16

L1
η∇−TV 0.987 0.006 0.988 23 42.43 1.07 42.37 21 2.5E4 3.4E3 2.5E4 20

L1
η∇−ICTV 0.988 0.006 0.989 119 42.56 1.06 42.51 135 2.4E4 3.5E3 2.5E4 113

L1
η∇−TGV2 0.987 0.006 0.989 42 42.51 1.09 42.44 20 2.4E4 3.6E3 2.5E4 51

95 % t test ICTV > TGV2 > TV ICTV > TGV2 > TV ICTV > TGV2 > TV

L2
2−TV 0.986 0.007 0.987 13 42.46 0.95 42.43 17 0.42 0.07 0.43 17

L2
2−ICTV 0.987 0.007 0.988 139 42.57 0.95 42.56 128 0.41 0.07 0.42 128

L2
2−TGV2 0.987 0.007 0.988 38 42.53 0.97 42.51 40 0.41 0.07 0.42 40

95 % t test ICTV > TGV2 > TV ICTV > TGV2 > TV ICTV > TGV2 > TV

Table 7 Regulariser performance with batch learning, L1
η∇ and L2

2 costs, noise variance σ 2 = 10; BSDS300 dataset, resized

SSIM PSNR Value

Mean Std Med Best Mean Std Med Best Mean Std Med Best

Noisy data 0.731 0.120 0.744 8 27.72 0.88 28.09 2 1.4E5 2.5E3 1.4E5 0

L1
η∇−TV 0.893 0.035 0.897 23 31.24 1.87 30.94 23 7.5E4 2.2E4 7.3E4 18

L1
η∇−ICTV 0.897 0.034 0.902 134 31.36 1.81 31.11 150 7.4E4 2.2E4 7.2E4 107

L1
η∇−TGV2 0.896 0.035 0.901 35 31.31 1.88 31.01 25 7.4E4 2.3E4 7.2E4 75

95 % t test ICTV > TGV2 > TV ICTV > TGV2 > TV ICTV, TGV2 > TV

L2
2−TV 0.887 0.035 0.889 29 31.31 1.50 31.15 25 5.72 1.91 5.51 25

L2
2−ICTV 0.889 0.036 0.893 127 31.41 1.44 31.28 131 5.57 1.83 5.37 131

L2
2−TGV2 0.888 0.035 0.891 44 31.38 1.50 31.20 44 5.64 1.90 5.44 44

95 % t test ICTV > TGV2 > TV ICTV > TGV2 > TV ICTV > TGV2 > TV

rigorous analysis of this optimisation problem as well as a
numerical discussion in the context of image denoising.

Analytically, we obtain the existence results for the bilevel
optimisation problem and prove the Fréchet differentiabil-

ity of the solution operator. This leads to the existence
of Lagrange multipliers and a first-order optimality system
characterising optimal solutions. In particular, the existence
of an adjoint state allows to obtain a cost functional gradi-
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Table 8 Regulariser performance with batch learning, L1
η∇ and L2

2 costs, noise variance σ 2 = 20; BSDS300 dataset, resized

SSIM PSNR Value

Mean Std Med Best Mean Std Med Best Mean Std Med Best

Noisy data 0.505 0.143 0.516 4 21.80 0.92 22.14 1 2.8E5 7.9E3 2.8E5 0

L1
η∇−TV 0.789 0.067 0.798 18 27.37 2.13 26.98 24 1.0E5 3.7E4 9.8E4 14

L1
η∇−ICTV 0.795 0.065 0.804 139 27.46 2.10 27.05 141 1.0E5 3.6E4 9.6E4 91

L1
η∇−TGV2 0.794 0.066 0.804 39 27.44 2.12 27.04 34 1.0E5 3.7E4 9.6E4 95

95 % t test ICTV > TGV2 > TV ICTV > TGV2 > TV TGV2 > ICTV > TV

L2
2−TV 0.786 0.053 0.790 31 27.50 1.71 27.27 33 14.11 5.78 13.16 33

L2
2−ICTV 0.790 0.054 0.790 123 27.56 1.64 27.37 119 13.84 5.54 12.75 119

L2
2−TGV2 0.789 0.053 0.793 46 27.55 1.70 27.33 48 13.93 5.73 12.95 48

95 % t test ICTV, TGV2 > TV ICTV, TGV2 > TV ICTV > TGV2 > TV

Fig. 15 Image for which ICTV
performs better than TGV2,
σ = 2

(a) Original (b) Individual L1
η∇-TGV2,

PSNR=42.06, SSIM=0.98
(c) Batch L1

η∇-TGV2,
PSNR=41.82, SSIM=0.98

(d) Noisy, σ = 2 (e) Individual L1
η∇-ICTV,

PSNR=42.13, SSIM=0.99
(f ) Batch L1

η∇-ICTV,
PSNR=41.93, SSIM=0.98

ent formula which is of importance in the design of efficient
solution algorithms.

Wemake use of the bilevel learning approach, and the the-
oretical findings, to compare the performance—in terms of
returned image quality—of TV, ICTV and TGV regularisa-
tion. A statistical analysis, carried out on a dataset of 200
images, suggests that ICTV performs slightly better than
TGV, andbothperformbetter thanTV, in average. For denois-
ing of images with a high noise level, ICTV and TGV score
comparably well. For images with large smooth areas, TGV
performs better than ICTV.

Moreover, we propose a new cost functional for the
bilevel learning problem, which exhibits interesting theoret-
ical properties and has a better behaviour with respect to the
PSNR related L2 cost used previously in the literature. This
study raises the question of other, alternative cost function-
als. For instance, one could be tempted to used the SSIM
as cost, but its non-convexity might present several ana-
lytical and numerical difficulties. The new cost functional,
proposed in this paper, turns out to be a good compromise
between image quality measure and analytically tractable
cost term.
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Fig. 16 Image for which ICTV
performs better than TGV2,
σ = 20

(a) Original (b) Individual L1
η∇-TGV2,

PSNR=28.28, SSIM=0.74
(c) Batch L1

η∇-TGV2,
PSNR=28.25, SSIM=0.73

(d) Noisy, σ = 20 (e) Individual L1
η∇-ICTV,

PSNR=28.35, SSIM=0.74
(f ) Batch L1

η∇-ICTV,
PSNR=28.26, SSIM=0.73

Fig. 17 Image for which TGV2

performs better than ICTV,
σ = 2

(a) Original (b) Individual L1
η∇-TGV2,

PSNR=43.10, SSIM=0.99
(c) Batch L1

η∇-TGV2,
PSNR=42.20, SSIM=0.97

(d) Noisy, σ = 2 (e) Individual L1
η∇-ICTV,

PSNR=42.82, SSIM=0.99
(f ) Batch L1

η∇-ICTV,
PSNR=42.07, SSIM=0.97
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Fig. 18 Image for which TGV2

performs better than ICTV,
σ = 20

(a) Original (b) Individual L1
η∇-TGV2,

PSNR=30.78, SSIM=0.91
(c) Batch L1

η∇-TGV2,
PSNR=30.78, SSIM=0.87

(d) Noisy, σ = 20 (e) Individual L1
η∇-ICTV,

PSNR=30.55, SSIM=0.90
(f ) Batch L1

η∇-ICTV,
PSNR=30.68, SSIM=0.86
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