6,183 research outputs found
Comparison between S. T. radar and in situ balloon measurements
A campaign for simultaneous in situ and remote observation of both troposphere and stratosphere took place near Aire-sur-l'Adour (in southeastern France) on May 4, 1984. The aim of this campaign was a better understanding of the physics of radar echoes. The backscattered signal obtained with a stratosphere-troposphere radar both at the vertical and 15 deg. off vertical is compared with the velocity and temperature measurements made in the same region (about 10 km north of the radar site) by balloon-borne ionic anenometers and temperature sensors. In situ measurements clearly indicate that the temperature fluctuations are not always consistent with the standard turbulent theory. Nevertheless, the assumptions generally made (isotropy and turbulent field in k) and the classical formulation so derived for radar reflectivity are able to reproduce the shape of the radar return power profiles in oblique directions. Another significant result is the confirmation of the role played by the atmospheric stratification in the vertical echo power. It is important to develop these simultaneous in situ and remote experiments for a better description of the dynamical and thermal structure of the atmosphere and for a better understanding of the mechanisms governing clear-air radar reflectivity
The PROUST radar
The Stratosphere-Troposphere (ST) radar called PROUST works at 935 MHz using the same klystron and antenna as the coherent-scatter radar. The use of this equipment for ST work has required some important modifications of the transmitting system and the development of receiving, data processing and acquisition (1984,1985) equipment. The modifications are discussed
Trap models with slowly decorrelating observables
We study the correlation and response dynamics of trap models of glassy
dynamics, considering observables that only partially decorrelate with every
jump. This is inspired by recent work on a microscopic realization of such
models, which found strikingly simple linear out-of-equilibrium
fluctuation-dissipation relations in the limit of slow decorrelation. For the
Barrat-Mezard model with its entropic barriers we obtain exact results at zero
temperature for arbitrary decorrelation factor . These are then
extended to nonzero , where the qualitative scaling behaviour and all
scaling exponents can still be found analytically. Unexpectedly, the choice of
transition rates (Glauber versus Metropolis) affects not just prefactors but
also some exponents. In the limit of slow decorrelation even complete scaling
functions are accessible in closed form. The results show that slowly
decorrelating observables detect persistently slow out-of-equilibrium dynamics,
as opposed to intermittent behaviour punctuated by excursions into fast,
effectively equilibrated states.Comment: 29 pages, IOP styl
Simultaneous fine structure observation of wind and temperature profiles by the Arecibo 430-MHz radar and in situ measurements
A simultaneous campaign of balloon and radar measurements took place on March 14 to 16, 1984, above the Arecibo 430-MHz radar. This radar was operating with a vertical resolution of 150 m following two antenna beam directions: 15 deg. from the zenith, respectively, in the N-S and E-W directions. The main results concerning the comparison between the flight and simultaneous radar measurements obtained on March 15, 1984 are analyzed. The radar return power profile (S/N ratio in dB) exhibits maxima which are generally well correlated with step-like structures in the potential temperature profile. These structures are generally considered as the consequence of the mixing processes induced by the turbulence. A good correlation appears in the altitude range 12.5 to 19 km between wind shears induced by a wave structure observed in the meridional wind and the radar echo power maxima. This wave structure is characterized by a vertical wavelength of about 2.5 km, and a period in the range 30 to 40 hours. These characteristics are deduced from the twice daily rawinsonde data launched from the San Juan Airport by the National Weather Service. These results pointed out an example of the interaction between wave and turbulence in the upper troposphere and lower stratosphere. Turbulent layers are observed at locations where wind shears related to an internal inertia-gravity wave are maxima
The PROUST radar: First results
Two campaigns took place in 1984 with the PROUST Radar operating in a bistatic mode, the transmitting antenna pointing at the vertical and the receiving one, 1 deg. off the vertical axis. The antenna beam intersection covers an altitude range between 3 and 9 km. The first of these campaigns are analyzed. The results analyzed show the capability of the PROUST Radar to measure the turbulent parameters and study the turbulence-wave interaction. In its present configuration (bistatic mode and 600 m vertical resolution), it has been necessary to make some assumptions that are known not to be truly fulfilled: homogeneous turbulence and constant vertical wind intensity over a 600-m thickness. It is clear that a more detailed study of the interaction between wave and turbulence will be possible with the next version of PROUST Radar (30-m altitude resolution and monostatic mode) that will soon be achieved
Fluctuation-dissipation relations in trap models
Trap models are intuitively appealing and often solvable models of glassy
dynamics. In particular, they have been used to study aging and the resulting
out-of-equilibrium fluctuation-dissipation relations between correlations and
response functions. In this note I show briefly that one such relation, first
given by Bouchaud and Dean, is valid for a general class of mean-field trap
models: it relies only on the way a perturbation affects the transition rates,
but is independent of the distribution of trap depths and the form of the
unperturbed transition rates, and holds for all observables that are
uncorrelated with the energy. The model with Glauber dynamics and an
exponential distribution of trap depths, as considered by Barrat and Mezard,
does not fall into this class if the perturbation is introduced in the standard
way by shifting all trap energies. I show that a similar relation between
response and correlation nevertheless holds for the out-of-equilibrium dynamics
at low temperatures. The results point to intriguing parallels between trap
models with energetic and entropic barriers.Comment: Extended introduction and discussion of relation to results of
cond-mat/0303445. 13 pages, 2 figures, IOP styl
SuperLupus: A Deep, Long Duration Transit Survey
SuperLupus is a deep transit survey monitoring a Galactic Plane field in the
Southern hemisphere. The project is building on the successful Lupus Survey,
and will double the number of images of the field from 1700 to 3400, making it
one of the longest duration deep transit surveys. The immediate motivation for
this expansion is to search for longer period transiting planets (5-8 days) and
smaller radii planets. It will also provide near complete recovery for the
shorter period planets (1-3 days). In March, April, and May 2008 we obtained
the new images and work is currently in progress reducing these new data.Comment: 3 pages, 2 figures, to appear in the Proceedings of IAU Symposium
253, 2008: Transiting Planet
Non-equilibrium temperatures in steady-state systems with conserved energy
We study a class of non-equilibrium lattice models describing local
redistributions of a globally conserved quantity, which is interpreted as an
energy. A particular subclass can be solved exactly, allowing to define a
statistical temperature T_{th} along the same lines as in the equilibrium
microcanonical ensemble. We compute the response function and find that when
the fluctuation-dissipation relation is linear, the slope T_{FD}^{-1} of this
relation differs from the inverse temperature T_{th}^{-1}. We argue that T_{th}
is physically more relevant than T_{FD}, since in the steady-state regime, it
takes equal values in two subsystems of a large isolated system. Finally, a
numerical renormalization group procedure suggests that all models within the
class behave similarly at a coarse-grained level, leading to a new parameter
which describes the deviation from equilibrium. Quantitative predictions
concerning this parameter are obtained within a mean-field framework.Comment: 16 pages, 2 figures, submitted to Phys. Rev.
Secular interactions between inclined planets and a gaseous disk
In a planetary system, a secular particle resonance occurs at a location
where the precession rate of a test particle (e.g. an asteroid) matches the
frequency of one of the precessional modes of the planetary system. We
investigate the secular interactions of a system of mutually inclined planets
with a gaseous protostellar disk that may contain a secular nodal particle
resonance. We determine the normal modes of some mutually inclined planet-disk
systems. The planets and disk interact gravitationally, and the disk is
internally subject to the effects of gas pressure, self-gravity, and turbulent
viscosity. The behavior of the disk at a secular resonance is radically
different from that of a particle, owing mainly to the effects of gas pressure.
The resonance is typically broadened by gas pressure to the extent that global
effects, including large-scale warps, dominate. The standard resonant torque
formula is invalid in this regime. Secular interactions cause a decay of the
inclination at a rate that depends on the disk properties, including its mass,
turbulent viscosity, and sound speed. For a Jupiter-mass planet embedded within
a minimum-mass solar nebula having typical parameters, dissipation within the
disk is sufficient to stabilize the system against tilt growth caused by
mean-motion resonances.Comment: 30 pages, 6 figures, to be published in The Astrophysical Journa
Continuous theory of active matter systems with metric-free interactions
We derive a hydrodynamic description of metric-free active matter: starting
from self-propelled particles aligning with neighbors defined by "topological"
rules, not metric zones, -a situation advocated recently to be relevant for
bird flocks, fish schools, and crowds- we use a kinetic approach to obtain
well-controlled nonlinear field equations. We show that the density-independent
collision rate per particle characteristic of topological interactions
suppresses the linear instability of the homogeneous ordered phase and the
nonlinear density segregation generically present near threshold in metric
models, in agreement with microscopic simulations.Comment: Submitted to Physical Review Letter
- …