353 research outputs found

    How long does it take to generate a group?

    Get PDF
    The diameter of a finite group GG with respect to a generating set AA is the smallest non-negative integer nn such that every element of GG can be written as a product of at most nn elements of AâˆȘA−1A \cup A^{-1}. We denote this invariant by \diam_A(G). It can be interpreted as the diameter of the Cayley graph induced by AA on GG and arises, for instance, in the context of efficient communication networks. In this paper we study the diameters of a finite abelian group GG with respect to its various generating sets AA. We determine the maximum possible value of \diam_A(G) and classify all generating sets for which this maximum value is attained. Also, we determine the maximum possible cardinality of AA subject to the condition that \diam_A(G) is "not too small". Connections with caps, sum-free sets, and quasi-perfect codes are discussed

    The incidence of prostate cancer in Iran: Results of a population-based cancer registry

    Get PDF
    Background: Little is known about the epidemiology of prostate cancer in Iranian men. We carried out an active prostate cancer surveillance program in five provinces of Iran. Methods: Data used in this study were obtained from population-based cancer registries between 1996 and 2000. Results: The age-standardized incidence rate of prostate carcinoma in the five provinces was 5.1 per 100,000 person-years. No significant difference was seen in the age-standardized incidence rate of prostate cancer within the provinces studied. The mean±SD age of patients with prostate cancer was 67±13.5 years. Conclusion: The incidence of prostate cancer in Iran is very low as compared to the Western countries. This can partly be explained by lack of nationwide screening program, younger age structure and quality of cancer registration system in Iran

    Resolving sets for Johnson and Kneser graphs

    Get PDF
    A set of vertices SS in a graph GG is a {\em resolving set} for GG if, for any two vertices u,vu,v, there exists x∈Sx\in S such that the distances d(u,x)≠d(v,x)d(u,x) \neq d(v,x). In this paper, we consider the Johnson graphs J(n,k)J(n,k) and Kneser graphs K(n,k)K(n,k), and obtain various constructions of resolving sets for these graphs. As well as general constructions, we show that various interesting combinatorial objects can be used to obtain resolving sets in these graphs, including (for Johnson graphs) projective planes and symmetric designs, as well as (for Kneser graphs) partial geometries, Hadamard matrices, Steiner systems and toroidal grids.Comment: 23 pages, 2 figures, 1 tabl

    On analog quantum algorithms for the mixing of Markov chains

    Full text link
    The problem of sampling from the stationary distribution of a Markov chain finds widespread applications in a variety of fields. The time required for a Markov chain to converge to its stationary distribution is known as the classical mixing time. In this article, we deal with analog quantum algorithms for mixing. First, we provide an analog quantum algorithm that given a Markov chain, allows us to sample from its stationary distribution in a time that scales as the sum of the square root of the classical mixing time and the square root of the classical hitting time. Our algorithm makes use of the framework of interpolated quantum walks and relies on Hamiltonian evolution in conjunction with von Neumann measurements. There also exists a different notion for quantum mixing: the problem of sampling from the limiting distribution of quantum walks, defined in a time-averaged sense. In this scenario, the quantum mixing time is defined as the time required to sample from a distribution that is close to this limiting distribution. Recently we provided an upper bound on the quantum mixing time for Erd\"os-Renyi random graphs [Phys. Rev. Lett. 124, 050501 (2020)]. Here, we also extend and expand upon our findings therein. Namely, we provide an intuitive understanding of the state-of-the-art random matrix theory tools used to derive our results. In particular, for our analysis we require information about macroscopic, mesoscopic and microscopic statistics of eigenvalues of random matrices which we highlight here. Furthermore, we provide numerical simulations that corroborate our analytical findings and extend this notion of mixing from simple graphs to any ergodic, reversible, Markov chain.Comment: The section concerning time-averaged mixing (Sec VIII) has been updated: Now contains numerical plots and an intuitive discussion on the random matrix theory results used to derive the results of arXiv:2001.0630

    Universal Geometric Graphs

    Full text link
    We introduce and study the problem of constructing geometric graphs that have few vertices and edges and that are universal for planar graphs or for some sub-class of planar graphs; a geometric graph is \emph{universal} for a class H\mathcal H of planar graphs if it contains an embedding, i.e., a crossing-free drawing, of every graph in H\mathcal H. Our main result is that there exists a geometric graph with nn vertices and O(nlog⁥n)O(n \log n) edges that is universal for nn-vertex forests; this extends to the geometric setting a well-known graph-theoretic result by Chung and Graham, which states that there exists an nn-vertex graph with O(nlog⁥n)O(n \log n) edges that contains every nn-vertex forest as a subgraph. Our O(nlog⁥n)O(n \log n) bound on the number of edges cannot be improved, even if more than nn vertices are allowed. We also prove that, for every positive integer hh, every nn-vertex convex geometric graph that is universal for nn-vertex outerplanar graphs has a near-quadratic number of edges, namely Ωh(n2−1/h)\Omega_h(n^{2-1/h}); this almost matches the trivial O(n2)O(n^2) upper bound given by the nn-vertex complete convex geometric graph. Finally, we prove that there exists an nn-vertex convex geometric graph with nn vertices and O(nlog⁥n)O(n \log n) edges that is universal for nn-vertex caterpillars.Comment: 20 pages, 8 figures; a 12-page extended abstracts of this paper will appear in the Proceedings of the 46th Workshop on Graph-Theoretic Concepts in Computer Science (WG 2020

    Highly Luminescent Salts Containing Well-Shielded Lanthanide-Centered Complex Anions and Bulky Imidazolium Countercations

    Get PDF
    In this paper, we report on the syntheses, structures, and characterization of four molten salts containing imidazolium cations and europium(III)- or terbium(III)-centered complex anions. In the complex anions, the lanthanide centers are wrapped by four pseudodiketonate anionic ligands, which prevent them from contacting with high-frequency oscillators and allow them to show intense characteristic europium(III) or terbium(III) emission, small line widths, high color purity, high quantum yields (30−49%), and long decay times (\u3e2 ms)

    Development of intuitive rules: Evaluating the application of the dual-system framework to understanding children's intuitive reasoning

    Get PDF
    This is an author-created version of this article. The original source of publication is Psychon Bull Rev. 2006 Dec;13(6):935-53 The final publication is available at www.springerlink.com Published version: http://dx.doi.org/10.3758/BF0321390

    Sensitivity of a tonne-scale NEXT detector for neutrinoless double beta decay searches

    Full text link
    The Neutrino Experiment with a Xenon TPC (NEXT) searches for the neutrinoless double-beta decay of Xe-136 using high-pressure xenon gas TPCs with electroluminescent amplification. A scaled-up version of this technology with about 1 tonne of enriched xenon could reach in less than 5 years of operation a sensitivity to the half-life of neutrinoless double-beta decay decay better than 1E27 years, improving the current limits by at least one order of magnitude. This prediction is based on a well-understood background model dominated by radiogenic sources. The detector concept presented here represents a first step on a compelling path towards sensitivity to the parameter space defined by the inverted ordering of neutrino masses, and beyond.Comment: 22 pages, 11 figure
    • 

    corecore