219 research outputs found

    FinDer v.2: Improved real-time ground-motion predictions for M2–M9 with seismic finite-source characterization

    Get PDF
    Recent studies suggest that small and large earthquakes nucleate similarly, and that they often have indistinguishable seismic waveform onsets. The characterization of earthquakes in real time, such as for earthquake early warning, therefore requires a flexible modeling approach that allows a small earthquake to become large as fault rupture evolves over time. Here, we present a modeling approach that generates a set of output parameters and uncertainty estimates that are consistent with both small/moderate (≤M6.5) and large earthquakes (>M6.5) as is required for a robust parameter interpretation and shaking forecast. Our approach treats earthquakes over the entire range of magnitudes (>M2) as finite line-source ruptures, with the dimensions of small earthquakes being very small (<100 m) and those of large earthquakes exceeding several tens to hundreds of kilometres in length. The extent of the assumed line source is estimated from the level and distribution of high-frequency peak acceleration amplitudes observed in a local seismic network. High-frequency motions are well suited for this approach, because they are mainly controlled by the distance to the rupturing fault. Observed ground-motion patterns are compared with theoretical templates modeled from empirical ground-motion prediction equations to determine the best line source and uncertainties. Our algorithm extends earlier work by Böse et al. for large finite-fault ruptures. This paper gives a detailed summary of the new algorithm and its offline performance for the 2016 M7.0 Kumamoto, Japan and 2014 M6.0 South Napa, California earthquakes, as well as its performance for about 100 real-time detected local earthquakes (2.2 ≤ M ≤ 5.1) in California. For most events, both the rupture length and the strike are well constrained within a few seconds (<10 s) of the event origin. In large earthquakes, this could allow for providing warnings of up to several tens of seconds. The algorithm could also be useful for resolving fault plane ambiguities of focal mechanisms and identification of rupturing faults for earthquakes as small as M2.5

    The {\eta}'-carbon potential at low meson momenta

    Full text link
    The production of η\eta^\prime mesons in coincidence with forward-going protons has been studied in photon-induced reactions on 12^{12}C and on a liquid hydrogen (LH2_2) target for incoming photon energies of 1.3-2.6 GeV at the electron accelerator ELSA. The η\eta^\prime mesons have been identified via the ηπ0π0η6γ\eta^\prime\rightarrow \pi^0 \pi^0\eta \rightarrow 6 \gamma decay registered with the CBELSA/TAPS detector system. Coincident protons have been identified in the MiniTAPS BaF2_2 array at polar angles of 2θp112^{\circ} \le \theta _{p} \le 11^{\circ}. Under these kinematic constraints the η\eta^\prime mesons are produced with relatively low kinetic energy (\approx 150 MeV) since the coincident protons take over most of the momentum of the incident-photon beam. For the C-target this allows the determination of the real part of the η\eta^\prime-carbon potential at low meson momenta by comparing with collision model calculations of the η\eta^\prime kinetic energy distribution and excitation function. Fitting the latter data for η\eta^\prime mesons going backwards in the center-of-mass system yields a potential depth of V = -(44 ±\pm 16(stat)±\pm15(syst)) MeV, consistent with earlier determinations of the potential depth in inclusive measurements for average η\eta^\prime momenta of \approx 1.1 GeV/cc. Within the experimental uncertainties, there is no indication of a momentum dependence of the η\eta^\prime-carbon potential. The LH2_2 data, taken as a reference to check the data analysis and the model calculations, provide differential and integral cross sections in good agreement with previous results for η\eta^\prime photoproduction off the free proton.Comment: 9 pages, 13 figures. arXiv admin note: text overlap with arXiv:1608.0607

    FinDer v.2: Improved real-time ground-motion predictions for M2–M9 with seismic finite-source characterization

    Get PDF
    Recent studies suggest that small and large earthquakes nucleate similarly, and that they often have indistinguishable seismic waveform onsets. The characterization of earthquakes in real time, such as for earthquake early warning, therefore requires a flexible modeling approach that allows a small earthquake to become large as fault rupture evolves over time. Here, we present a modeling approach that generates a set of output parameters and uncertainty estimates that are consistent with both small/moderate (≤M6.5) and large earthquakes (>M6.5) as is required for a robust parameter interpretation and shaking forecast. Our approach treats earthquakes over the entire range of magnitudes (>M2) as finite line-source ruptures, with the dimensions of small earthquakes being very small (<100 m) and those of large earthquakes exceeding several tens to hundreds of kilometres in length. The extent of the assumed line source is estimated from the level and distribution of high-frequency peak acceleration amplitudes observed in a local seismic network. High-frequency motions are well suited for this approach, because they are mainly controlled by the distance to the rupturing fault. Observed ground-motion patterns are compared with theoretical templates modeled from empirical ground-motion prediction equations to determine the best line source and uncertainties. Our algorithm extends earlier work by Böse et al. for large finite-fault ruptures. This paper gives a detailed summary of the new algorithm and its offline performance for the 2016 M7.0 Kumamoto, Japan and 2014 M6.0 South Napa, California earthquakes, as well as its performance for about 100 real-time detected local earthquakes (2.2 ≤ M ≤ 5.1) in California. For most events, both the rupture length and the strike are well constrained within a few seconds (<10 s) of the event origin. In large earthquakes, this could allow for providing warnings of up to several tens of seconds. The algorithm could also be useful for resolving fault plane ambiguities of focal mechanisms and identification of rupturing faults for earthquakes as small as M2.5

    Experimental constraints on the ω\omega-nucleus real potential

    Get PDF
    In a search for ω\omega mesic states, the production of ω\omega-mesons in coincidence with forward going protons has been studied in photon induced reactions on 12^{12}C for incident photon energies of 1250 - 3100 MeV. The π0γ\pi^0 \gamma pairs from decays of bound or quasi-free ω\omega-mesons have been measured with the CBELSA/TAPS detector system in coincidence with protons registered in the MiniTAPS forward array. Structures in the total energy distribution of the π0γ\pi^0 \gamma pairs, which would indicate the population and decay of bound ω 11\omega~^{11}B states, are not observed. The π0γ\pi^0 \gamma cross section of 0.3 nb/MeV/sr observed in the bound state energy regime between -100 and 0 MeV may be accounted for by yield leaking into the bound state regime because of the large in-medium width of the ω\omega-meson. A comparison of the measured total energy distribution with calculations suggests the real part V0V_0 of the ω 11\omega~^{11}B potential to be small and only weakly attractive with V0(ρ=ρ0)=15±V_0(\rho=\rho_0) = -15\pm 35(stat) ±\pm20(syst) MeV in contrast to some theoretical predictions of attractive potentials with a depth of 100 - 150 MeV.Comment: 13 pages, 8 figure

    Photoproduction of eta mesons from the neutron: cross sections and double polarization observable E

    Full text link
    Photoproduction of η\eta mesons from neutrons} \abstract{Results from measurements of the photoproduction of η\eta mesons from quasifree protons and neutrons are summarized. The experiments were performed with the CBELSA/TAPS detector at the electron accelerator ELSA in Bonn using the η3π06γ\eta\to3\pi^{0}\to6\gamma decay. A liquid deuterium target was used for the measurement of total cross sections and angular distributions. The results confirm earlier measurements from Bonn and the MAMI facility in Mainz about the existence of a narrow structure in the excitation function of γnnη\gamma n\rightarrow n\eta. The current angular distributions show a forward-backward asymmetry, which was previously not seen, but was predicted by model calculations including an additional narrow P11P_{11} state. Furthermore, data obtained with a longitudinally polarized, deuterated butanol target and a circularly polarized photon beam were analyzed to determine the double polarization observable EE. Both data sets together were also used to extract the helicity dependent cross sections σ1/2\sigma_{1/2} and σ3/2\sigma_{3/2}. The narrow structure in the excitation function of γnnη\gamma n\rightarrow n\eta appears associated with the helicity-1/2 component of the reaction

    The polarization observables T, P, and H and their impact on γppπ0\gamma p \to p\pi^0 multipoles

    Full text link
    Data on the polarization observables T, P, and H for the reaction γppπ0\gamma p\to p\pi^0 are reported. Compared to earlier data from other experiments, our data are more precise and extend the covered range in energy and angle substantially. The results were extracted from azimuthal asymmetries measured using a transversely polarized target and linearly polarized photons. The data were taken at the Bonn electron stretcher accelerator ELSA with the CBELSA/TAPS detector. Within the Bonn-Gatchina partial wave analysis, the new polarization data lead to a significant narrowing of the error band for the multipoles for neutral-pion photoproduction

    The N(1520) 3/2- helicity amplitudes from an energy-independent multipole analysis based on new polarization data on photoproduction of neutral pions

    Full text link
    New data on the polarization observables T, P, and H for the reaction γppπ0\gamma p \to p\pi^0 are reported. The results are extracted from azimuthal asymmetries when a transversely polarized butanol target and a linearly polarized photon beam are used. The data were taken at the Bonn electron stretcher accelerator ELSA using the CBELSA/TAPS detector. These and earlier data are used to perform a truncated energy-independent partial wave analysis in sliced-energy bins. This energy-independent analysis is compared to the results from energy-dependent partial wave analyses

    First measurement of the helicity asymmetry for γppπ0\gamma p\rightarrow p\pi^0 in the resonance region

    Full text link
    The first measurement of the helicity dependence of the photoproduction cross section of single neutral pions off protons is reported for photon energies from 600 to 2300\,MeV, covering nearly the full solid angle. The data are compared to predictions from the SAID, MAID, and BnGa partial wave analyses. Strikingly large differences between data and predictions are observed which are traced to differences in the helicity amplitudes of well known and established resonances. Precise values for the helicity amplitudes of several resonances are reported

    Seasonal Variations of Seismic Activity on Mars?

    Get PDF
    We analyze the sequence of seismic events of different types as recorded by the SEIS instrument of the InSight mission. After several weeks without any detection, event counts started to increase at the end of May 2019. The majority of recorded events belongs to the class of 2.4 Hz events, which prominently excite a continuously observed natural resonance frequency. Comparison with expected event counts from a constant-rate Poisson process shows a repeated, step wise increase of the event rate with time. At the same time, event amplitudes, and hence magnitudes, are found to increase as well
    corecore