128 research outputs found

    Investigation of Graded La2NiO4+ Cathodes to Improve SOFC Electrochemical Performance

    Get PDF
    Mixed ionic and electronic conducting MIEC oxides are promising materials for use as cathodes in solid oxide fuel cells SOFCs due to their enhanced electrocatalytic activity compared with electronic conducting oxides. In this paper, the MIEC oxide La2NiO4+ was prepared by the sol-gel route. Graded cathodes were deposited onto yttria-stabilized zirconia YSZ pellets by dip-coating, and electrochemical impedance spectroscopy studies were performed to characterize the symmetrical cell performance. By adapting the slurries, cathode layers with different porosities and thicknesses were obtained. A ceria gadolinium oxide CGO barrier layer was introduced, avoiding insulating La2Zr2O7 phase formation and thus reducing resistance polarization of the cathode. A systematic correlation between microstructure, composition, and electrochemical performance of these cathodes has been performed. An improvement of the electrochemical performance has been demonstrated, and a reduction in the area specific resistance ASR by a factor of 4.5 has been achieved with a compact interlayer of La2NiO4+ between the dense electrolyte and the porous La2NiO4+ cathode layer. The lowest observed ASR of 0.11 cm2 at 800°C was obtained from a symmetrical cell composed of a YSZ electrolyte, a CGO interlayer, an intermediate compact La2NiO4+ layer, a porous La2NiO4+ electrode layer, and a current collection layer of platinum paste

    Thick films of YSZ electrolytes by dip-coating process

    Get PDF
    Yttria stabilized zirconia (YSZ, 8% Y2O3) thick films were coated on porous Ni-YSZ substrates using the dip-coating process and a suspension with a new formulation. The suspension was obtained by addition of a polymeric matrix in a stable suspension of a commercial YSZ (Tosoh) powders dispersed in an azeotropic MEK-EtOH mixture. The green layers were densified after an optimization of the suspension composition. YSZ Tosoh particles encapsulated by a zirconium alkoxide sol and added with colloidal alkoxide precursor are used to load the suspension. The in situ growth of these colloids increases significantly the layers density after an appropriated heat treatment. The obtained films are continuous, homogeneous and 20 ÎŒm thick. Different microstructures are obtained depending on the synthesis parameters of the suspension

    Preparation of Ni–YSZ thin and thick films on metallic interconnects as cell supports. Applications as anode for SOFC

    Get PDF
    In this work, we propose the preparation of a duplex anodic layer composed of both a thin (100 nm) and a thick film (10 lm) with Ni–YSZ material. The support of this anode is a metallic substrate, which is the interconnect of the SOFC unit cell. The metallic support limits the temperature of thermal treatment at 800 C to keep a good interconnect mechanical behaviour and to reduce corrosion. We have chosen to elaborate anodic coatings by sol–gel route coupled with dip-coating process, which are low cost techniques and allow working with moderate temperatures. Thin films are obtained by dipping interconnect substrate into a sol, and thick films into an optimized slurry. After thermal treatment at only 800 C, anodic coatings are adherent and homogeneous. Thin films have compact microstructures that confer ceramic protective barrier on metal surface. Further coatings of 10 lm thick are porous and constitute the active anodic material

    Synthesis by sol-gel route of oxyapatite powders for dense ceramics. Applications as electrolytes for solid oxide fuel cells

    Get PDF
    Abstract Solid oxide fuel cells have considerable interest in recent years, because of their high efficiency and environmentally friendly nature. Such systems required oxygen-conducting electrolytes and now the most common electrolyte is yttria stabilized zirconia (YSZ). This compound exhibits high oxide ion conductivity at elevated temperatures (850-1000°C). However, this high working temperature causes problems in terms of materials selection and lifetime. One solution is to develop new oxide ions conductors exhibiting high oxide ion conductivity at intermediary temperatures (700-800°C). Recent work has identified Ln 10-x Si 6 O 26±z (Ln = rare earths) as a good fast oxide ion conductor. Undoped and doped Ln 10-x B 6 O 26±z (B = Si or Ge) oxides are currently prepared by solid-state methods. In that work, we propose a sol-gel process to synthesize powders of La 9.33 Si 6 O 26 type-silicated apatites. The main advantage is to decrease the crystallization temperature in comparison to the conventional methods, allowing the synthesis of reactive powders with nanometric particles size. These oxides are synthesized using silicon alkoxide and lanthanum nitride as precursors. In the litterature, no study refers to the synthesis of mixed oxides with silicon alcoxides. However, there are several studies on sol-gel synthesis of glasses with this precursor. In this study, several processing parameters have been investigated (the hydrolysis ratio, the concentration of metallic precursors in the sol and the role of organic compounds) in order to synthesize pure phases after the decomposition of the sols. Pure powders of La 9.33 Si 6 O 26 type-silicated apatites are obtained at 800°C. These powders were used to prepare ceramics. Several processing parameters as morphology of powders (agglomeration, particle sizes) and, heating profiles have been studied on the densification. Dense ceramics (90-95%) have been prepared at temperatures around 1400°C. The used of sol-gel powders allow the decrease of the sintering temperature of about 200°C

    Predicting Pneumonia and Influenza Mortality from Morbidity Data

    Get PDF
    BACKGROUND: Few European countries conduct reactive surveillance of influenza mortality, whereas most monitor morbidity. METHODOLOGY/PRINCIPAL FINDINGS: We developed a simple model based on Poisson seasonal regression to predict excess cases of pneumonia and influenza mortality during influenza epidemics, based on influenza morbidity data and the dominant types/subtypes of circulating viruses. Epidemics were classified in three levels of mortality burden (“high”, “moderate” and “low”). The model was fitted on 14 influenza seasons and was validated on six subsequent influenza seasons. Five out of the six seasons in the validation set were correctly classified. The average absolute difference between observed and predicted mortality was 2.8 per 100,000 (18% of the average excess mortality) and Spearman's rank correlation coefficient was 0.89 (P = 0.05). CONCLUSIONS/SIGNIFICANCE: The method described here can be used to estimate the influenza mortality burden in countries where specific pneumonia and influenza mortality surveillance data are not available

    Composition and porosity graded La2−xNiO4+ÎŽ (x≄0) interlayers for SOFC: Control of the microstructure via a sol–gel process

    Get PDF
    We have developed composition and porosity graded La2−xNiO4+ÎŽ (x≄0) cathode interlayers for low-temperature solid oxide fuel cell that exhibit good adhesion with the electrolyte, controlled porosity and grain size and good electrochemical behaviour. La2−xNiO4+ÎŽ (x≄0) monolayers are elaborated from a derived sol–gel method using nitrate salts, acetylacetone and hexamethylenetetramine in acetic acid. As a function of the organic concentration and the molar ratio of lanthanum to nickel, these layers present platelets or spherical shape grains with a size distribution ranging from 50 to 200 nm, as verified by SEM-FEG. On the basis of this processing protocol, we prepared porosity and composition graded lanthanum nickelates interlayers with effective control of the pore distribution, the nanocrystalline phase, the thickness and the subsequent electrochemical properties

    Functional modulation and directed assembly of an enzyme through designed non-natural post-translation modification

    Get PDF
    Post-translational modification (PTM) modulates and supplements protein functionality. In nature this high precision event requires specific motifs and/or associated modification machinery. To overcome the inherent complexity that hinders PTM's wider use, we have utilized a non-native biocompatible Click chemistry approach to site-specifically modify TEM ÎČ-lactamase that adds new functionality. In silico modelling was used to design TEM ÎČ-lactamase variants with the non-natural amino acid p-azido-L-phenylalanine (azF) placed at functionally strategic positions permitting residue-specific modification with alkyne adducts by exploiting strain-promoted azide–alkyne cycloaddition. Three designs were implemented so that the modification would: (i) inhibit TEM activity (Y105azF); (ii) restore activity compromised by the initial mutation (P174azF); (iii) facilitate assembly on pristine graphene (W165azF). A dibenzylcyclooctyne (DBCO) with amine functionality was enough to modulate enzymatic activity. Modification of TEMW165azF with a DBCO–pyrene adduct had little effect on activity despite the modification site being close to a key catalytic residue but allowed directed assembly of the enzyme on graphene, potentially facilitating the construction of protein-gated carbon transistor system

    Synthesis of La2NiO4+d oxides by sol–gel process: Structural and microstructural evolution from amorphous to nanocrystallized powders

    Get PDF
    In this paper, the structural and microstructural transition from amorphous to La2NiO4+d nanocrystallized oxides synthesized by a polymeric route based on Pechini’s work has been studied by several experimental techniques including infrared spectroscopy and wide angle X-ray scattering. The synthesis parameters which govern this transition have been identified in order to synthesize La2NiO4+d oxides with various mean crystallite sizes and non stoichiometry levels. Therefore, it has been demonstrated that the control of the nature and the content of organic compounds in the polymeric sols allows the preparation of La2NiO4+d metastable phases with a mean crystallite size ranging from 100 to 220 nm and a non stoichiometry level ranging from 0.15 to 0.22 at 25 8C. As the cathodic performance strongly depends on the physical characteristics of the oxides, this study shows that our versatile process may be suitable to elaborate electrodes with different electrochemical behaviours

    Online detection and quantification of epidemics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Time series data are increasingly available in health care, especially for the purpose of disease surveillance. The analysis of such data has long used periodic regression models to detect outbreaks and estimate epidemic burdens. However, implementation of the method may be difficult due to lack of statistical expertise. No dedicated tool is available to perform and guide analyses.</p> <p>Results</p> <p>We developed an online computer application allowing analysis of epidemiologic time series. The system is available online at <url>http://www.u707.jussieu.fr/periodic_regression/</url>. The data is assumed to consist of a periodic baseline level and irregularly occurring epidemics. The program allows estimating the periodic baseline level and associated upper forecast limit. The latter defines a threshold for epidemic detection. The burden of an epidemic is defined as the cumulated signal in excess of the baseline estimate. The user is guided through the necessary choices for analysis. We illustrate the usage of the online epidemic analysis tool with two examples: the retrospective detection and quantification of excess pneumonia and influenza (P&I) mortality, and the prospective surveillance of gastrointestinal disease (diarrhoea).</p> <p>Conclusion</p> <p>The online application allows easy detection of special events in an epidemiologic time series and quantification of excess mortality/morbidity as a change from baseline. It should be a valuable tool for field and public health practitioners.</p

    Antiretroviral-naive and -treated HIV-1 patients can harbour more resistant viruses in CSF than in plasma

    Get PDF
    Objectives The neurological disorders in HIV-1-infected patients remain prevalent. The HIV-1 resistance in plasma and CSF was compared in patients with neurological disorders in a multicentre study. Methods Blood and CSF samples were collected at time of neurological disorders for 244 patients. The viral loads were >50 copies/mL in both compartments and bulk genotypic tests were realized. Results On 244 patients, 89 and 155 were antiretroviral (ARV) naive and ARV treated, respectively. In ARV-naive patients, detection of mutations in CSF and not in plasma were reported for the reverse transcriptase (RT) gene in 2/89 patients (2.2%) and for the protease gene in 1/89 patients (1.1%). In ARV-treated patients, 19/152 (12.5%) patients had HIV-1 mutations only in the CSF for the RT gene and 30/151 (19.8%) for the protease gene. Two mutations appeared statistically more prevalent in the CSF than in plasma: M41L (P = 0.0455) and T215Y (P = 0.0455). Conclusions In most cases, resistance mutations were present and similar in both studied compartments. However, in 3.4% of ARV-naive and 8.8% of ARV-treated patients, the virus was more resistant in CSF than in plasma. These results support the need for genotypic resistance testing when lumbar puncture is performe
    • 

    corecore